Eeva Jansson

and 11 more

The architecture underpinning genomic divergence is still a largely uncharted territory and likely case-dependent. Here, we investigated genome-wide variation in Ballan wrasse, a northeastern Atlantic fish species that displays two sympatric color morphs, spotty and plain, that have been suggested to represent subspecies. We produced a chromosome-level reference genome, and thereafter investigated genomic divergence among 152 individuals including both morphs, from two localities in Spain and Norway each, and one in France. Differences between morphs dominated in Spain in accordance with sympatric divergence, whereas in Norway geographic divergence was highest supporting allopatric differentiation. Chromosomes had very large low-recombining areas that were shared across populations and have accumulated further divergence. Within the Spanish morphs, large islands of divergence covered ~11% of the genome, showed high morph-specificity, and strong selection. The same regions showed frequent admixture in the French morphs and no differentiation in Norway. In contrast, divergent regions observed between sampling localities in Norway were scattered, shorter and found throughout the genome. High inbreeding and lower diversity were observed in the Norwegian samples, consistent with the proposed recolonization bottleneck and subsequent drift. Several genomic regions were significantly associated with morphs and contained tens of genes of diverse functions, suggesting that coloration is unlikely to be the sole driver of divergence. Our results suggest that large, polygenic divergence islands were initially formed and preserved in the south but were gradually lost and uncoupled from the phenotype of the fish further north when these areas were repopulated after the last glacial maximum.

Enrique Celemín

and 13 more

The Harbour porpoise (Phocoena phocoena) is a highly mobile cetacean species which primarily occurs in coastal and shelf waters across the Northern hemisphere. It inhabits heterogeneous seascapes that vary broadly in salinity and temperature. Here we produced 74 whole genomes at intermediate coverage to study Harbour porpoise’s evolutionary history and investigate the role of local adaptation in the diversification into subspecies and populations. We identified ~6 million high quality SNPs sampled at 8 localities across the North Atlantic and adjacent waters, which we used for population structure, demographic, and genotype-environment association analyses. Our results support a genetic differentiation between three subspecies, and three distinct populations within the subspecies P.p. phocoena: Atlantic, Belt Sea and Proper Baltic Sea. Effective population size and Tajima’s D levels suggest a population contraction in both Black Sea and Iberian porpoises while a population expansion in the P.p. phocoena populations. Phylogenetic trees indicate a post-glacial colonization of Harbour porpoises from a southern refugium. Genotype-environment association analysis identified salinity as a major driver in genomic variation and we identified candidate genes putatively underlying adaptation to different salinity levels. Our study highlights the value of whole genome resequencing to unravel subtle population structure in highly mobile species and shows how strong environmental gradients and local adaptation may lead to population differentiation. The results have great conservation implications as we found major levels of inbreeding and low genetic diversity in the endangered Black Sea subspecies and identified the critically endangered Proper Baltic Sea porpoises as a separate population.