Milena Sokolowska

and 16 more

Non-steroidal anti-inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti-inflammatory, antipyretic and analgesic effects are applied against symptoms of respiratory infections, including SARS-CoV-2, as well as in other acute and chronic inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID-19 also revealed the gaps in our understanding of their mechanism of action, selectivity and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs-exacerbated respiratory disease (NERD). In this context, the consensus report summarises currently available knowledge, novel discoveries and controversies regarding the use of NSAIDs in COVID-19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID-19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarise the major knowledge gaps and unmet needs in current eicosanoid research.

Jean Louis Gueant

and 10 more

Background: Nonimmediate (delayed) allergic reactions to penicillins are common and some of them can be life-threatening. The genetic factors influencing these reactions are unknown/poorly known/poorly understood. We assessed the genetic predictors of a delayed penicillin allergy that cover the HLA loci. Methods: Using next-generation sequencing (NGS), we genotyped the MHC region in 24 patients with delayed hypersensitivity compared with 20 patients with documented immediate hypersensitivity to penicillins recruited in Italy. Subsequently, we analyzed in silico Illumina Immunochip genotyping data that covered the HLA loci in 98 Spanish patients with delayed hypersensitivity and 315 with immediate hypersensitivity compared to 1,308 controls. Results: The two alleles DRB3*02:02:01:02 and DRB3*02:02:01:01 were reported in twenty cases with delayed reactions (83%) and ten cases with immediate reactions (50%), but not in the Allele Frequency Net Database. Bearing at least one of the two alleles increased the risk of delayed reactions compared to immediate reactions, with an OR of 8.88 (95% CI, 3.37–23.32; P <0.0001). The haplotype (ACAA) from rs9268835, rs6923504, rs6903608, and rs9268838 genetic variants of the HLA-DRB3 genomic region was significantly associated with an increased risk of delayed hypersensitivity to penicillins (OR, 1.7; 95% CI: 1.06–1.92; P=0.001), but not immediate hypersensitivity. Conclusion: We showed that the HLA-DRB3 locus is strongly associated with an increased risk of delayed penicillin hypersensitivity, at least in Southwestern Europe. The determination of HLA-DRB3*02:02 alleles in the risk management of severe delayed hypersensitivity to penicillins should be evaluated further in larger population samples of different origins.

Marek Jutel

and 68 more