The complexation of mercury (Hg) with dissolved organic matter (DOM) is a pivotal factor influencing transformations, transport, and bioavailability of Hg in aquatic environments. However, identifying these complexes poses a significant challenge because of their exceedingly low concentrations and presence of coexisting ions. In this study, mercury-dissolved organic matter (Hg-DOM) complexes were isolated through solid phase extraction (SPE) from Hg-humic acid suspensions and complexes were putatively identified using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Dissolved organic carbon (DOC) and total Hg analysis before and after SPE showed an increase in DOC:Hg ratio. The DOC:Hg ratio was lower in extracts from cartridges with silica structure bonded with hydrocarbon chains (C18) than priority pollutant cartridges (PPL) cartridges at circumneutral pH, indicating that C18 was more effective at extracting DOM complexed Hg. These results were confirmed with FTICR-MS analysis, where two Hg-DOM complexes were putatively identified from PPL extracts as opposed to nine from C18 (Winnow score >75%). In addition, C 8H 13HgN 2O 2S, a molecular formula with a m/z ratio of 403.04, was identified across three separate extractions using a C18 cartridge, suggesting that the complexes were preserved during extraction and, presumably, electrospray ionization. These results highlight the effectiveness of the methodology developed in this study - SPE coupled with FTICR-MS for isolating and identifying Hg-DOM complexes. This approach allows for the exploration of the elemental and structural composition of Hg-DOM complexes, which affects Hg speciation, bioavailability, and transformations in aquatic ecosystems.