loading page

Habitat stability modulates temporal β-diversity patterns of seagrass-associated fauna across biogeographical scales
  • +8
  • Sandra Navarro-Mayoral,
  • Francisco Otero-Ferrer,
  • Victoria Fernandez-Gonzalez,
  • Nestor Bosch,
  • Yolanda Fernández-Torquemada,
  • Fiona Nash,
  • Jorge Terrados,
  • Luis Miguel Ferrero Vicente,
  • Yoana del Pilar-Ruso ,
  • Fernando Espino,
  • Fernando Tuya
Sandra Navarro-Mayoral
Universidad de Las Palmas de Gran Canaria

Corresponding Author:sandra.navarro@ulpgc.es

Author Profile
Francisco Otero-Ferrer
Universidad de Las Palmas de Gran Canaria
Author Profile
Victoria Fernandez-Gonzalez
Universidad de Alicante
Author Profile
Nestor Bosch
Universidad de Las Palmas de Gran Canaria
Author Profile
Yolanda Fernández-Torquemada
Universidad de Alicante
Author Profile
Fiona Nash
IMEDEA-CSIC
Author Profile
Jorge Terrados
IMEDEA-CSIC
Author Profile
Luis Miguel Ferrero Vicente
Universidad de Alicante
Author Profile
Yoana del Pilar-Ruso
Universidad de Alicante
Author Profile
Fernando Espino
Universidad de Las Palmas de Gran Canaria
Author Profile
Fernando Tuya
Universidad de Las Palmas de Gran Canaria
Author Profile

Abstract

Aim Identifying drivers that shape biodiversity across biogeographical regions is important to predict ecosystem responses to environmental changes. While beta diversity has been widely used to describe biodiversity patterns across space, the dynamic assembly of species over time has been comparatively overlooked. Insights from terrestrial and marine studies on temporal beta diversity has mostly considered environmental drivers, while the role of biotic mechanisms has been largely ignored. Here, we investigated patterns of temporal variation in beta diversity of seagrass-associated animals (amphipods, as model organisms). Location We conducted a study in three biogeographical regions across a temperate to subtropical latitudinal gradient (approximately 2,000 km, 13º of latitude). In each region, we randomly selected three C. nodosa meadows, totalling nine meadows sampled seasonally (i.e., four times per year) from 2016 to 2018. Methods We partitioned temporal beta diversity into its turnover (i.e. species replacement) and nestedness (i.e. differences in species composition caused by species losses) components and addressed the relative influence of both temporal variation in habitat structure (i.e., biotic driver) and environmental conditions on such patterns. Results Our study revealed high temporal beta diversity of amphipod assemblages across the three biogeographical regions, denoting significant fluctuations in species composition over time. We identified species turnover as the primary driver of temporal beta diversity, strongly linked to temporal variability in local habitat structure rather than regional climatic drivers. Subtropical Atlantic meadows with high structural stability over time exhibited the largest turnover rates compared with temperate Mediterranean meadows, under lower structural stability, where nestedness was a more relevant component of temporal beta diversity. Main conclusions Our results highlight the crucial role of habitat stability in modulating temporal beta diversity patterns on animals associated with seagrasses, stressing its importance for developing management and restoration actions in the context of diversity loss and fragmentation of ecosystems.
23 Jul 2024Submitted to Ecology and Evolution
24 Jul 2024Submission Checks Completed
24 Jul 2024Assigned to Editor
25 Jul 2024Reviewer(s) Assigned
19 Sep 2024Review(s) Completed, Editorial Evaluation Pending
25 Sep 2024Editorial Decision: Revise Minor
07 Oct 20241st Revision Received
08 Oct 2024Assigned to Editor
08 Oct 2024Submission Checks Completed
08 Oct 2024Review(s) Completed, Editorial Evaluation Pending
11 Oct 2024Reviewer(s) Assigned
20 Nov 2024Editorial Decision: Revise Minor
20 Nov 20242nd Revision Received
22 Nov 2024Assigned to Editor
22 Nov 2024Submission Checks Completed
22 Nov 2024Review(s) Completed, Editorial Evaluation Pending
25 Nov 2024Editorial Decision: Accept