Most studies using cosmic-ray neutron sensors (CRNS) for soil moisture estimation use high-energy neutron monitor observations to correct for changes in incoming neutron intensity, but there is interest in over-water CRNS observations and muon observations for such purposes. This study compares these approaches with a focus on observations from an over-water pontoon-based CRNS system. Pontoon and neutron monitor intensity comparisons showed similar responses with the best statistical agreement when neutron monitor observations were from locations of similar cutoff rigidity or when scaling for geomagnetic and elevational effects were applied. Comparison of historic variations in neutron monitor and muon detector intensity, and more recent observations from the pontoon, revealed temporal differences and weaker short-term responses from the muon detector. Time-delays in intensity correction for the pontoon and neutron monitors were observed during a Forbush decrease and through cross-correlation analysis over the comparison period with delays likely a result of longitudinal differences. Pontoon neutron intensity exhibited slightly higher amplitudes over the study period. Some of this was related to periods of irregular water vapour distribution in the atmosphere where current humidity corrections appear insufficient. Application of intensity corrections to soil moisture estimates illustrated the increasing importance of accurate corrections with decreasing cutoff rigidity and increasing elevation. The impact of neutron intensity correction was greatest for wet soil conditions at low cutoff rigidity sites at higher elevations. Over-water CRNS observations offer a means to correct CRNS observations with the advantages of being locally managed, locally applicable, and directly relevant to CRNS energy spectra.

Martin Schrön

and 8 more

Cosmic radiation on Earth responds to heliospheric, geomagnetic, atmospheric, and lithospheric changes. In order to use its signal for soil hydrological monitoring, the signal of thermal and epithermal neutron detectors needs to be corrected for external influencing factors. However, theories about the neutron response to soil water, air pressure, air humidity, and incoming cosmic radiation are still under debate. To challenge these theories, we isolated the neutron response from almost any terrestrial changes by operating bare and moderated neutron detectors in a buoy on a lake in Germany from July 15 to December 02, 2014. We found that the count rate over water has been better predicted by a recent theory compared to the traditional approach. We further found strong linear correlation parameters to air pressure and air humidity for epithermal neutrons, while thermal neutrons responded differently. Correction for incoming radiation proved to be necessary for both thermal and epithermal neutrons, for which we tested different neutron monitors and correction methods. Here, the conventional approach worked best with the Jungfraujoch monitor in Switzerland, while the approach from a recent study was able to adequately rescale data from more remote neutron monitors. However, no approach was able to sufficiently remove the signal from a major Forbush decrease event, to which thermal and epithermal neutrons showed a comparatively strong response. The buoy detector experiment provided a unique dataset for empirical testing of traditional and new theories on CRNS. It could serve as a local alternative to reference data from remote neutron monitors.