Anja Moeslinger

and 4 more

Gabriella Nordin

and 9 more

The bow shock current (BSC) plays an important role in supplying the magnetosphere with solar wind energy, in particular during times of low solar wind magnetosonic Mach numbers. Since the magnetic pile-up in the magnetosheath has to be maintained, the BSC cannot close locally, but must instead connect to magnetospheric current systems. However, the details of this closure remain poorly understood. For east-west interplanetary magnetic field (IMF) it has been hypothesised that the BSC partly closes to the high-latitude ionosphere, as field-aligned currents (FACs) on open field lines, but there is still no statistical evidence of this. In order to investigate this hypothesis, we use nine years of Defence Meteorological Satellite Program (DMSP) data to construct normalised FAC maps of the northern hemisphere polar cap. We sort them according to different IMF clock angles, IMF magnitudes and magnetosonic Mach numbers. By separating opposite polarity FACs, we show that, on average, a unipolar FAC exists in the dayside polar cap when the IMF By ≠ 0, regardless of the sign of the IMF Bz. This current flows out of (into) the ionosphere in the northern hemisphere for IMF By > 0 (< 0) and is thus of the correct polarity to connect to the north-south component of the BSC. Moreover, it is strongest when the BSC flows predominantly in the north-south direction. These results constitute the first statistical evidence in support of at least a partial closure of the BSC to the ionosphere during non-zero IMF By.

Shahab Fatemi

and 6 more

Magnetosheath jets represent localized enhancements in dynamic pressure observed within the magnetosheath. These energetic entities, carrying excess energy and momentum, can impact the magnetopause and disrupt the magnetosphere. Therefore, they play a vital role in coupling the solar wind and terrestrial magnetosphere. However, our understanding of the morphology and formation of these complex, transient events remains incomplete over two decades after their initial observation. Previous studies have relied on oversimplified assumptions, considering jets as elongated cylinders with dimensions ranging from 0.1RE to 5.0RE (Earth radii). In this study, we present simulation results obtained from Amitis, a high-performance hybrid-kinetic plasma framework (particle ions and fluid electrons) running in parallel on Graphics Processing Units (GPUs) for fast and more environmentally friendly computation compared to CPU-based models. Considering realistic scales, we present the first global, three-dimensional (3D in both configuration and velocity spaces) hybrid-kinetic simulation results of the interaction between solar wind plasma and Earth. Our high-resolution kinetic simulations reveal the 3D structure of magnetosheath jets, showing that jets are far from being simple cylinders. Instead, they exhibit intricate and highly interconnected structures with dynamic 3D characteristics. As they move through the magnetosheath, they wrinkle, fold, merge, and split in complex ways before a subset reaches the magnetopause.

Shahab Fatemi

and 6 more

Magnetosheath jets represent localized enhancements in dynamic pressure observed within the magnetosheath. These energetic entities, carrying excess energy and momentum, can impact the magnetopause and disrupt the magnetosphere. Therefore, they play a vital role in coupling the solar wind and terrestrial magnetosphere. However, our understanding of the morphology and formation of these complex, transient events remains incomplete over two decades after their initial observation. Previous studies have relied on oversimplified assumptions, considering jets as elongated cylinders with dimensions ranging from 0.1 RE to 5.0 RE (Earth radii). In this study, we present simulation results obtained from Amitis, a high-performance hybrid-kinetic plasma framework (particle ions and fluid electrons) running in parallel on Graphics Processing Units (GPUs) for fast and more environmentally friendly computation compared to CPU-based models. Considering realistic scales, we present the first global, three-dimensional (3D in both configuration and velocity spaces) hybrid-kinetic simulation results of the interaction between solar wind plasma and Earth. Our high-resolution kinetic simulations reveal the 3D structure of magnetosheath jets, showing that jets are far from being simple cylinders. Instead, they exhibit intricate and highly interconnected structures with dynamic 3D characteristics. As they move through the magnetosheath, they wrinkle, fold, merge, and split in complex ways before a subset reaches the magnetopause.