Safwan Alfattani

and 3 more

Safwan Alfattani

and 3 more

The ever-increasing number of users and new services in urban regions can lead terrestrial base stations (BSs) to become overloaded and, consequently, some users to go unserved. Compounding this, users in urban areas can face severe shadowing and blockages, which means that some users do not receive a desired quality of service (QoS). Motivated by the energy and cost benefits of reconfigurable intelligent surfaces (RIS) and the advantages of high altitude platform stations (HAPS), including their wide footprint and strong line-of-sight (LoS) links, we propose a solution to service the stranded users using the RISaided HAPS. More specifically, we propose to service the stranded users by a dedicated control station (CS) via a HAPS equipped with RIS (HAPS-RIS). Through this approach, users are not restricted from being serviced by the cell they belong to; hence, we refer to this approach as beyond-cell communication. As we demonstrate in this paper, beyond-cell communication works in tandem with legacy terrestrial networks to support uncovered or unserved users. Optimal transmit power and RIS unit assignment strategies for the users based on different network objectives are introduced. Numerical results demonstrate the benefits of the proposed beyond-cell communication approach. Moreover, the results provide insights into the different optimization objectives and their interplay with minimum quality-of-service (QoS) and network resources, such as transmit power and the number of reflectors.

Safwan Alfattani

and 4 more

Non-terrestrial networks, including Unmanned Aerial Vehicles (UAVs), High Altitude Platform Station (HAPS) and Low Earth Orbiting (LEO) satellites, are expected to have a pivotal role in the sixth generation wireless networks. With their inherent features such as flexible placement, wide footprint, and preferred channel conditions, they can tackle several challenges in current terrestrial networks. However, their successful and widespread adoption relies on energy-efficient on-board communication systems. In this context, the integration of Reconfigurable Smart Surfaces (RSS) into aerial platforms is envisioned as a key enabler of energy-efficient and cost-effective deployments of aerial platforms. Indeed, RSS consist of low-cost reflectors capable of smartly directing signals in a nearly passive way. We investigate in this paper the link budget of RSS-assisted communications under the two discussed RSS reflection paradigms in the literature, namely the specular and the scattering reflection paradigm types. Specifically, we analyze the characteristics of RSS-equipped aerial platforms and compare their communication performance with that of RSS-assisted terrestrial networks, using standardized channel models. In addition, we derive the optimal aerial platforms placements under both reflection paradigms. The obtained results provide important insights for the design of RSS-assisted communications. For instance, given that a HAPS has a large RSS surface, it provides superior link budget performance in most studied scenarios. In contrast, the limited RSS area on UAVs and the large propagation loss in LEO satellite communications make them unfavorable candidates for supporting terrestrial users. Finally, the optimal location of the RSS-equipped platform may depend on the platform’s altitude, coverage footprint, and type of environment.