Meng Huang

and 9 more

The typical coarse resolution of Earth system models (ESMs) ($\sim$100 km) is insufficient to represent atmospheric features critical for aerosols and aerosol-cloud interactions (ACI), contributing to uncertainties in climate predictions. Significant efforts have been made to develop next-generation ESMs for global kilometer-scale resolutions. However, the behavior of aerosol and ACI parameterizations at kilometer scales within a global ESM framework is unclear, and model evaluation at such high resolutions is computationally infeasible. To address this challenge, aerosol and ACI in the Energy Exascale Earth System Model (E3SM) are evaluated at a convection-permitting 3.25 km resolution using the regionally refined mesh (RRM) capability. Kilometer-scale E3SM simulations are performed in four geographical regions with distinct aerosol and cloud conditions. These kilometer-scale simulations are compared with coarse-resolution E3SM simulations and are evaluated against ground-based, aircraft, and satellite measurements. Results show that increasing model resolution moderately improves the multivariable relationships related to ACI, such as the cloud condensation nuclei number versus cloud droplet number (N$\mathrm{_d}$), and N$\mathrm{_d}$ versus the liquid water path. However, its impact on accurately predicting aerosol properties varies by region. Overall, the differences between E3SM simulations at different resolutions are smaller than the differences between model simulations and observations. These results suggest that increasing resolution is insufficient to improve the simulation of aerosol and ACI with existing process representations. Improved process representations are required to achieve more accurate simulations of aerosol and ACI at global kilometer scales.

Zhe Feng

and 17 more

Global kilometer-scale models are the future of Earth system models as they can explicitly simulate organized convective storms and their associated extreme weather. Here, we comprehensively examined tropical mesoscale convective system (MCS) characteristics in the DYAMOND (DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains) models for both summer and winter phases by applying eight different feature trackers to the simulations and satellite observations. Although different trackers produce substantial differences (a factor of 2-3) in observed MCS frequency and their contribution to total precipitation, model-observation differences in MCS statistics are more consistent among the trackers. DYAMOND models are generally skillful in simulating tropical mean MCS frequency, with multi-model mean biases of 2.9% over land and -0.5% over ocean. However, most models underestimate the MCS precipitation amount (23%) and their contribution to total precipitation (17%) relative to observations. These biases show large inter-model variability, but are generally smaller over land (13%) than over ocean (21%) on average. MCS diurnal cycle and cloud shield characteristics are better simulated than precipitation. Most models overestimate MCS precipitation intensity and underestimate stratiform rain contribution (up to a factor of 2), particularly over land. Models also predict a wide range of precipitable water in the tropics compared to reanalysis and satellite observations, and many models simulate a greater sensitivity of MCS precipitation intensity to precipitable water. The MCS metrics developed in this work provide process-oriented diagnostics for future model development efforts.
A stochastic horizontal subgrid-scale mixing scheme is evaluated in ensemble simulations of a tropical oceanic deep convection case using a horizontal grid spacing (Δh) of 3 km. The stochastic scheme, which perturbs the horizontal mixing coefficient according to a prescribed spatiotemporal autocorrelation scale, is found to generally increase mesoscale organization and convective intensity relative to a non-stochastic control simulation. Perturbations applied at relatively short autocorrelation scales induce differences relative to the control that are more systematic than those from perturbations applied at relatively long scales that yield more variable outcomes. A simulation with mixing enhanced by a constant factor of 4 significantly increases mesoscale organization and convective intensity, while turning off horizontal subgrid-scale mixing decreases both. Total rainfall is modulated by a combination of mesoscale organization, areal coverage of convection, and convective intensity. The stochastic simulations tend to behave more similarly to the constant enhanced mixing simulation owing to greater impacts from enhanced mixing as compared to reduced mixing. The impacts of stochastic mixing are robust, ascertained by comparing the stochastic mixing ensembles with a non-stochastic mixing ensemble that has grid-scale noise added to the initial thermodynamic field. Compared to radar observations and a higher resolution Δh = 1 km simulation, stochastic mixing seemingly degrades the simulation performance. These results imply that stochastic mixing produces non-negligible impacts on convective system properties and evolution but does not lead to an improved representation of convective cloud characteristics in the case studied here.

Zhixiao Zhang

and 5 more

This study evaluates convective cell properties and their relationships with convective and stratiform rainfall within a season-long convection-permitting simulation over central Argentina using measurements from the RELAMPAGO-CACTI field campaign. While the simulation reproduces the total observed rainfall, it underestimates stratiform rainfall by 46% and overestimates convective rainfall by 43%. As Convective Available Potential Energy (CAPE) increases, the overestimation of convective rainfall decreases, but the underestimation of stratiform rainfall increases such that the high bias in the contribution of convective rainfall to total rainfall remains approximately constant at 26% across all CAPE conditions. Overestimated convective rainfall arises from the simulation generating 2.6 times more convective cells than observed despite similar observed and simulated cell growth processes, with relatively wide cells contributing most to excessive convective rainfall. Relatively shallow cells, typically reaching heights of 4–7 km, contribute most to the cell number bias. This bias increases as CAPE decreases, potentially because cells and their updrafts become narrower and more under-resolved as CAPE decreases. The gross overproduction of shallow cells leads to overly efficient precipitation and inadequate detrainment of ice aloft, thereby diminishing the formation of robust stratiform rainfall regions. Decreasing the model’s horizontal grid spacing from 3 to 1 or 0.333 km for representative low and high CAPE cases results in minimal change to the cell number and depth biases, while the stratiform and convective rainfall biases also fail to improve. This suggests that improving prediction of deep convective system growth depends on factors beyond solely increasing model resolution.

Andreas Franz Prein

and 12 more

Mesoscale convective systems (MCSs) are clusters of thunderstorms that are important in Earth’s water and energy cycle. Additionally, they are responsible for extreme events such as large hail, strong winds, and extreme precipitation. Automated object-based analyses that track MCSs have become popular since they allow us to identify and follow MCSs over their entire life cycle in a Lagrangian framework. This rise in popularity was accompanied by an increasing number of MCS tracking algorithms, however, little is known about how sensitive analyses are concerning the MCS tracker formulation. Here, we assess differences between six MCS tracking algorithms on South American MCS characteristics and evaluating MCSs in kilometer-scale simulations with observational-based MCSs over three years. All trackers are run with a common set of MCS classification criteria to isolate tracker formulation differences. The tracker formulation substantially impacts MCS characteristics such as frequency, size, duration, and contribution to total precipitation. The evaluation of simulated MCS characteristics is less sensitive to the tracker formulation and all trackers agree that the model can capture MCS characteristics well across different South American climate zones. Dominant sources of uncertainty are the segmentation of cloud systems and the treatment of splitting and merging of storms in MCS trackers. Our results highlight that comparing MCS analyses that use different tracking algorithms is challenging. We provide general guidelines on how MCS characteristics compare between trackers to facilitate a more robust assessment of MCS statistics in future studies.