Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at help@authorea.com in case you face any issues.

Jon Jenkins

and 11 more

The Surface Biology and Geology (SBG) mission is one of the core missions of NASA’s Earth System Observatory (ESO). SBG will acquire high resolution solar-reflected spectroscopy and thermal infrared observations at a data rate of ~10 TB/day and generate products at ~75 TB/day. As the per-day volume is greater than NASA’s total extant airborne hyperspectral data collection, collecting, processing/re- processing, disseminating, and exploiting the SBG data presents new challenges. To address these challenges, we are developing a prototype science pipeline and a full-volume global hyperspectral synthetic data set to help prepare for SBG’s flight. Our science pipeline is based on the science processing operations technology developed for the Kepler and TESS planet-hunting missions. The pipeline infrastructure, Ziggy, provides a scalable architecture for robust, repeatable, and replicable science and application products that can be run on a range of systems from a laptop to the cloud or an on-site supercomputer. Our effort began by ingesting data and applying workflows from the EO- 1/Hyperion 17-year mission archive that provides globally sampled visible through shortwave infrared spectra that are representative of SBG data types and volumes. We have fully implemented the first stage of processing, from the raw data (Level 0) to top-of-the-atmosphere radiance (Level 1R). We plan to begin reprocessing the entire 55 TB Hyperion data set by the end of 2021. Work to implement an atmospheric correction module to convert the L1R data to surface reflectance (Level 2) is also underway. Additionally, an effort to develop a hybrid High Performance Computing (HPC)/cloud processing framework has been started to help optimize the cost, processing throughput and overall system resiliency for SBG’s science data system (SDS). Separately, we have developed a method for generating full-volume synthetic data sets for SBG based on MODIS data and have made the first version of this data set available to the community on the data portal of NASA’s Advanced Supercomputing Division at NASA Ames Research Center. The synthetic data will make it possible to test parts of the pipeline infrastructure and other software to be applied for product generation.

E. Natasha Stavros

and 23 more

Observations of Planet Earth from space are a critical resource for science and society. Satellite measurements represent very large investments and United States (US) agencies organize their effort to maximize the return on that investment. The US National Research Council conducts a survey of earth science and applications to prioritize observations for the coming decade. The most recent survey prioritized a visible to shortwave infrared imaging spectrometer and a multi-spectral thermal infrared imager to meet a range of needs. First, and perhaps, foremost, it will be the premier integrated observatory for observing the emerging impacts of climate change . It will characterize the diversity of plant life by resolving chemical and physiological signatures. It will address wildfire, observing pre-fire risk, fire behavior and post-fire recovery. It will inform responses to hazards and disasters guiding responses to a wide range of events, including oil spills, toxic minerals in minelands, harmful algal blooms, landslides and other geological hazards. The SBG team analyzed needed instrument characteristics (spatial, temporal and spectral resolution, measurement uncertainty) and assessed the cost, mass, power, volume, and risk of different architectures. The Research and Applications team examined available algorithms, calibration and validation and societal applications and used end-to-end modeling to assess uncertainty. The team also identified valuable opportunities for international collaboration to increase the frequency of revisit through data sharing, adding value for all partners. Analysis of the science, applications, architecture and partnerships led to a clear measurement strategy and a well-defined observing system architecture.