Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at help@authorea.com in case you face any issues.

Bailey A. Murphy

and 4 more

Structurally complex forests optimize light and water resources to assimilate carbon more effectively, leading to higher productivity. Information obtained from Light Detection and Ranging (LiDAR)-derived structural complexity (SC) metrics across spatial scales serves as a powerful indicator of ecosystem-scale functions such as gross primary productivity (GPP). However, our understanding of mechanistic links between forest structure and function, and the impact of disturbance on the relationship, is limited. Here, we paired eddy covariance measurements of carbon and water fluxes in temperate forests collected in the CHEESEHEAD19 field campaign with drone LiDAR measurements of SC to establish which SC metrics were strong drivers of GPP, and tested potential mediators of the relationship. Mechanistic relationships were inspected at four metric calculation resolutions to determine whether relationships persisted with scale. Vertical heterogeneity metrics were the most influential in predicting productivity for forests with a significant degree of heterogeneity in management, forest type, and species composition. SC metrics included in the structure-function relationship as well as the strength of drivers was dependent on metric calculation resolution. The relationship was mediated by light use efficiency (LUE) and water use efficiency (WUE), with WUE being a stronger mediator and driver of GPP. These findings allow us to improve representation in ecosystem models of how SC impacts light and water-sensitive processes, and ultimately GPP. Improved models enhance our ability to simulate true ecosystem responses to management, resulting in a more accurate assessment of forest responses to management regimes and furthering our ability to assess climate mitigation and strategies.

Bailey Murphy

and 4 more

Structurally complex forests optimize light and water resources to assimilate carbon more effectively, leading to higher productivity. Information obtained from Light Detection and Ranging (LiDAR)-derived structural complexity (SC) metrics across spatial scales serves as a powerful indicator of ecosystem-scale functions such as gross primary productivity (GPP). However, our understanding of mechanistic links between forest structure and function, and the impact of disturbance on the relationship, is limited. Here, we paired eddy covariance measurements of carbon and water fluxes in temperate forests collected in the CHEESEHEAD19 field campaign with drone LiDAR measurements of SC to establish which SC metrics were strong drivers of GPP, and tested potential mediators of the relationship. Mechanistic relationships were inspected at four metric calculation resolutions to determine whether relationships persisted with scale. Vertical heterogeneity metrics were the most influential in predicting productivity for forests with a significant degree of heterogeneity in management, forest type, and species composition. SC metrics included in the structure-function relationship as well as the strength of drivers was dependent on metric calculation resolution. The relationship was mediated by light use efficiency (LUE) and water use efficiency (WUE), with WUE being a stronger mediator and driver of GPP. These findings allow us to improve representation in ecosystem models of how SC impacts light and water-sensitive processes, and ultimately GPP. Improved models enhance our ability to simulate true ecosystem responses to management, resulting in a more accurate assessment of forest responses to management regimes and furthering our ability to assess climate mitigation and strategies.