Diya Kamnani

and 4 more

Understanding the regional and temporal variability of atmospheric river (AR) seasonality is crucial for preparedness and mitigation of extreme events. Previously thought to peak mainly in winter, recent research reveals that ARs exhibit region-specific seasonality. However, AR analysis is heavily influenced by the chosen detection algorithm. Our study examines how AR seasonality varies based on both location, year and algorithm selection. We investigate the link between year-to-year consistency of peak AR activity and the presence of a dominant seasonal pattern. We categorize regions based on their year-to-year seasonality characteristics, including consistent patterns (e.g., India, Central Asia), patterns with occasional outliers (e.g., British Columbia coast, Gulf of Alaska), and regions lacking a clear dominant season of peak AR frequency (e.g., South Atlantic, parts of Australia). Hence, not all regions exhibit a consistent seasonal cycle of AR activity. Additionally, different algorithms may detect a consistent seasonal pattern for the same region but disagree on the exact dominant season. This is exemplified by the conflicting results obtained for China. Integrated Vapor Transport (IVT) often corroborates consistent or inconsistent patterns across regions. In conclusion, this study suggests that variations in the consistency of seasonal patterns are related not only to the detection technique but also to atmospheric circulation, synoptic and low-frequency anomalies. Understanding the variations in the consistency of seasonal pattern in areas like Britain remains challenging due to algorithmic and physical differences. These findings emphasize the need for a multi-faceted approach to AR research, considering not just detection methodologies but also regional characteristics and atmospheric processes. Understanding the specific reasons for inconsistent seasonal patterns is an important next step for future research to improve forecasts and preparedness.

William Davis Rush

and 24 more

Atmospheric rivers (ARs) are filamentary structures within the atmosphere that account for a substantial portion of poleward moisture transport and play an important role in Earth’s hydroclimate. However, there is no one quantitative definition for what constitutes an atmospheric river, leading to uncertainty in quantifying how these systems respond to global change. This study seeks to better understand how different AR detection tools (ARDTs) respond to changes in climate states utilizing single-forcing climate model experiments under the aegis of the Atmospheric River Tracking Method Intercomparison Project (ARTMIP). We compare a simulation with an early Holocene orbital configuration and another with CO2 levels of the Last Glacial Maximum to a pre-industrial control simulation to test how the ARDTs respond to changes in seasonality and mean climate state, respectively. We find good agreement among the algorithms in the AR response to the changing orbital configuration, with a poleward shift in AR frequency that tracks seasonal poleward shifts in atmospheric water vapor and zonal winds. In the low CO2 simulation, the algorithms generally agree on the sign of AR changes but there is substantial spread in their magnitude, indicating that mean-state changes lead to larger uncertainty. This disagreement likely arises primarily from differences between algorithms in their thresholds for water vapor and its transport used for identifying ARs. These findings warrant caution in ARDT selection for paleoclimate and climate change studies in which there is a change to the mean climate state, as ARDT selection contributes substantial uncertainty in such cases.