The current study presents new bed-by-bed brachiopod δ13C and δ18O records from Öland, Sweden, which together with previously published data from the East Baltic region, constitutes a high-resolution paired brachiopod and bulk rock carbon and oxygen isotope archive through the Lower to Upper Ordovician of Baltoscandia. This new dataset refines the temporal control on the global Ordovician δ18O-trend considerably, improving paleoenvironmental reconstructions through the main phase of the Great Ordovician Biodiversification Event (GOBE). The new brachiopod carbon and oxygen isotope records from Öland display strong similarity with the East Baltic records, elucidating the regional consistency as well as global correlation utility of the ensuing composite Baltoscandian Early to Middle Ordovician carbon and oxygen isotope record. The carbon isotope record from Öland indicates that prominent carbon cycle perturbations are recorded in both brachiopods and bulk carbonates, most notably the MDICE (Mid-Darriwilian Carbon Isotope Excursion). The oxygen isotope record reveals a long-term Early to Late Ordovician trend of increasingly heavier brachiopod δ18O values, with a pronounced increase during the Middle Ordovician Darriwilian Age. We interpret this trend as dominantly reflecting a paleotemperature signal indicating progressively cooler Early to Middle Ordovician climate with glacio-eustasy. Our Baltic δ18O values are therefore consistent with postulations that the biotic radiations during the GOBE and climatic cooling during the Darriwilian were strongly linked.