Sophie Aber

and 11 more

Katherine Woods

and 11 more

Detecting crustal deformation during transient deformation events at offshore subduction zones remains challenging. The spatiotemporal evolution of slow slip events (SSEs) on the offshore Hikurangi subduction zone, New Zealand, during February–July 2019, is revealed through a time-dependent inversion of onshore and offshore geodetic data that also account for spatially varying elastic crustal properties. Our model is constrained by seafloor pressure time series (as a proxy for vertical seafloor deformation), onshore continuous Global Navigation Satellite System (GNSS) data, and Interferometric Synthetic Aperture Radar (InSAR) displacements. Large GNSS displacements onshore and uplift of the seafloor (10-33 mm) require peak slip during the event of 150 to >200 mm at 6-12 km depth offshore Hawkes Bay and Gisborne, comparable to maximum slip observed during previous seafloor pressure deployments at north Hikurangi. The onshore and offshore data reveal a complex evolution of the SSE, over a period of months. Seafloor pressure data indicates the slow slip may have persisted longer near the trench than suggested by onshore GNSS stations in both the Gisborne and Hawkes Bay regions. Seafloor pressure data also reveal up-dip migration of SSE slip beneath Hawke Bay occurred over a period of a few weeks. The SSE source region appears to coincide with locations of the March 1947 Mw 7.0–7.1 tsunami earthquake offshore Gisborne and estimated Great earthquake rupture sources from paleoseismic investigations offshore Hawkes Bay, suggesting that the shallow megathrust at north and central Hikurangi is capable of both seismic and aseismic rupture.

Cyril Journeau

and 2 more

Taupo Volcano, located in the central part of the TVZ (Taupo volcanic Zone), North Island of New Zealand, is one of the most productive Rhyolitic centres in the world. Although its last eruption occurred about 1800 years ago, 16 periods of unrest have been identified including surface deformation, hydrothermal eruptions, and seismic swarms since 1870. The town of Taupo lies on the north-eastern shore of the lake filling the caldera of the volcano and is located close to recent seismic swarms and local surface deformation episodes highlighted in this report. The aim of this work is to study the different periods of episodic deformation, contrasting with the long-term deformation of the Taupo region, in order to constrain the sources generating local deformation. For this, an analysis of GPS (continuous and campaign stations) and InSAR data (from two satellites, EnviSAT and ALOS) was conducted. After correcting the data for several external factors such as subsidence generated by water pumping in the Wairakei-Tauhara geothermal station and displacements associated with slow slip events along the Hikurangi subduction interface, periods of local deformation have been identified. We highlight two periods of uplift with rates of 10 mm/yr in 2004-2008 and in 2011-2013 accompanied by more or less rapid horizontal deformation punctuated by seismic swarms. The geodetic data were inverted to characterize the deformation sources using the GBIS software, allowing the use of different analytical models. In order to explain the different periods of deformation over time, at least three sources at different locations are needed, revealing the presence of different processes at depths ranging from ∼ 10 km to ∼ 0.5 km and whose causes can vary given the complexity of the tectonic context characterizing the region.

Tim Naish

and 17 more

Anticipating and managing the impacts of sea-level rise for nations astride active tectonic margins requires rates of sea surface elevation change in relation to coastal land elevation to be understood. Vertical land motion (VLM) can either exacerbate or reduce sea-level changes with impacts varying significantly along a coastline. Determining rate, pattern, and variability of VLM near coasts leads to a direct improvement of location-specific relative sea level (RSL) estimates. Here, we utilise vertical velocity field from interferometric synthetic aperture radar (InSAR) data, calibrated with campaign and continuous Global Navigation Satellite System (GNSS), to determine the VLM for the entire coastline of New Zealand. Guided by existing knowledge of the seismic cycle, the VLM data infer long-term, interseismic rates of land surface deformation. We build probabilistic RSL projections using the Framework for Assessing Changes to Sea-level (FACTS) from IPCC Assessment Report 6 and ingest local VLM data to produce RSL projections at 7435 sites, thereby enhancing spatial coverage that was previously limited to tide gauges. We present ensembles of probability distributions of RSL for medium confidence climatic processes for each scenario to 2150 and low confidence processes to 2300. For regions where land subsidence is occurring at rates >2mm yr-1 VLM makes a significant contribution to RSL projections for all scenarios out 2150. Beyond 2150, for higher emissions scenarios, the land ice contribution to global sea level dominates. We discuss the planning implications of RSL projections, where timing of threshold exceedance for coastal inundation can be brought forward by decades.