Dovile Rasinskaite

and 7 more

Earth’s inner magnetosphere contains multiple electron populations influenced by different factors. The cold electrons of the plasmasphere, warm plasma that contributes to the ring current, and the relativistic plasma of the radiation belt often seem to behave independently. Using omni-directional flux and energy measurements from the HOPE and MagEIS instruments aboard the Van Allen Probes, we provide a detailed density and temperature description of the inner magnetosphere, offering a comprehensive statistical analysis of the entire Van Allen Probe era. While number density and temperature data at geosynchronous orbit are available, this study focuses on the inner magnetosphere (2 < L∗ < 6). Values of density and temperature are extracted by fitting energy and phase space density to obtain the distribution function. The fitted distributions are related to the zeroth and second moments to estimate the number density and temperature. Analysis has indicated that a two Maxwellian fit is sufficient over a wide range of L∗ and that there are two independent plasma populations. The more energetic population has a median number density of approximately 1.2 × 104 m−3 and a temperature of around 130 keV, with a temperature peak observed between L* = 4 and L*= 4.5. This population is relatively uniform in MLT. In contrast, the less energetic warm electron population has a median number density of about 2.5 × 104 m−3 and a temperature of 7.4 keV. Strong statistical trends in density and temperature across both L* and MLT are presented, along with potential sources driving these variations.

Christian J. Lao

and 3 more

Substorms can be identified from negative bays in the AL/SML index, which traces the minimum northward ground magnetic deflection at auroral latitudes, produced by enhancements of the westward electrojet. For substorms, negative bays are caused by the closure of the Substorm Current Wedge through the ionosphere, typically localised to the nightside and centred around 23-00 magnetic local time (MLT). In this case, the equivalent current pattern that causes the magnetic deflections is given the name Disturbance Polar (DP) 1. However, negative bays may also form when the westward electrojet is enhanced by increased convection, driving Pedersen and Hall currents in the auroral zone. Convection enhancements also strengthen the eastward electrojet, monitored by the maximum northward ground magnetic deflection as the AU/SMU index. In this case, the equivalent current pattern that produces the magnetic deflections is called DP2. Unlike other substorm identification methods, the SOPHIE method by Forsyth et al. (2015) attempts to distinguish between the DP1 and DP2 enhancements that cause substorm-like SML bays by also examining the SMU index. Despite this, we find evidence that up to 59% of the 30329 events originally identified as substorms come from enhancements of DP2 on top of the 2627 convection enhancement events already identified between 1997 and 2020. We explore ways to improve substorm identification using auroral indices to fully separate the DP1 and DP2 bays, but conclude that there is insufficient information in the auroral indices alone to achieve this.

Ryan McGranaghan

and 3 more

Field-aligned currents (FACs), or the system of currents flowing along Earth’s magnetic field lines, are the dominant form of energy and momentum exchange between the magnetosphere and ionosphere. FACs are ubiquitous across the high-latitude region and have unique characteristics depending on the magnetospheric or solar wind source mechanism, and, therefore, mapping location in the ionosphere (i.e. auroral zone, polar cap, cusp). Further complicating the picture, FACs also exhibit a large range of spatial and temporal scales. In order to create new understanding of FAC spatial and temporal scales, their cross-scale effects, and the impact on the polar region, including on critical technologies, new data analysis approaches are required. This talk addresses a coherent progression of investigation in three parts: 1) an exploration of the characteristics, controlling parameters, and relationships of multiscale FACs using a rigorous, comprehensive analysis across multiple spacecraft observations; 2) augmentation of these statistical results with detailed case studies, fusing observations from diverse platforms and incorporating critical information about the high-latitude electrodynamics across scales; and 3) a quantitative investigation of the impact on Global Navigation Satellite System (GNSS) signals. We find that the relationships between FAC scales are complex and reveal new information about the connection between multiscale FACs and irregular space weather activity. Additionally, there are observable signatures of multiscale FACs and resultant electrodynamic activity in ionospheric data from GNSS signals, suggesting that these signals are affected distinctly according to scale size of the coupling process. Our results indicate that GNSS data may be a powerful source of information about the multiscale near Earth space environment.
We examine the average evolution of precipitation-induced height-integrated conductances, along with field-aligned currents, in the nightside sector of the polar cap over the course of a substorm. Conductances are estimated from the average energy flux and mean energies derived from auroral emission data. Data are binned using a superposed epoch analysis on a normalised time grid based on the time between onset and recovery phase ($\delta$t) of each contributing substorm. We also examine conductances using a fixed time binning of width 0.25 hr. We split the data set by magnetic latitude of onset. We find that the highest conductances are observed for substorms with onsets that occur between 63 and 65 degrees magnetic latitude, peaking at around 11 mho (Hall) and 4.8 mho (Pedersen). Substorms with onsets at higher magnetic latitudes show lower conductances and less variability. Changes in conductance over the course of a substorm appear primarily driven by changes (about 40% at onset) in the average energy flux, rather than the average energy of the precipitation. Average energies increase after onset slower than energy flux, later these energies decrease slowly for the lowest latitude onsets. No clear expansion of the main region 1 and region 2 field-aligned currents is observed. However, we do see an ordering of the current magnitudes with magnetic latitude of onset, particularly for region 1 downwards FAC in the morning sector. Peak current magnitudes occur slightly after or before the start of the recovery phase for the normalised and fixed-time grids.