Zijin Zhang

and 16 more

We investigate the dynamics of relativistic electrons in the Earth’s outer radiation belt by analyzing the interplay of several key physical processes: electron losses due to pitch angle scattering from electromagnetic ion cyclotron (EMIC) waves and chorus waves, and electron flux increases from chorus wave-driven acceleration of ~100-300 keV seed electrons injected from the plasma sheet. We examine a weak geomagnetic storm on April 17, 2021, using observations from various spacecraft, including GOES, Van Allen Probes, ERG/ARASE, MMS, ELFIN, and POES. Despite strong EMIC- and chorus wave-driven electron precipitation in the outer radiation belt, trapped 0.1-1.5 MeV electron fluxes actually increased. We use theoretical estimates of electron quasi-linear diffusion rates by chorus and EMIC waves, based on statistics of their wave power distribution, to examine the role of those waves in the observed relativistic electron flux variations. We find that a significant supply of 100-300 keV electrons by plasma sheet injections together with chorus wave-driven acceleration can overcome the rate of chorus and EMIC wave-driven electron losses through pitch angle scattering toward the loss cone, explaining the observed net increase in electron fluxes. Our study emphasizes the importance of simultaneously taking into account resonant wave-particle interactions and modeled local energy gradients of electron phase space density following injections, to accurately forecast the dynamical evolution of trapped electron fluxes.

Chae-Woo Jun

and 19 more

We performed a statistical study of electromagnetic ion cyclotron (EMIC) wave distributions and their coupling with energetic protons in the inner magnetosphere using the Arase satellite data from May 2017 to December 2020. We investigated the energetic proton pitch-angle distributions and partial thermal pressures associated with EMIC waves using inter-calibrated proton data in the energy range of 30 eV/q-187 keV/q. With a cold plasma approximation, we computed the proton minimum resonance energies using the observed EMIC wave frequency and plasma density values. We found that the EMIC waves had left-handed polarization near the magnetic equator close to the threshold of proton cyclotron instability, and propagated to higher latitudes along the field line with polarization reversal. H-EMIC waves showed two peak occurrence regions in the morning and noon sectors at L=7.5-9 outside the plasmasphere. The flux enhancements associated with morning side H-EMIC waves appeared at E<1 keV/q among all pitch angles, while H-EMIC waves in the noon sector exhibited flux enhancement in field-aligned directions at E=1-100 keV/q. He-EMIC waves showed a broad occurrence region from 12 to 20 magnetic local time at L=5.5-8.5 inside the plasmasphere with strong flux enhancements at all pitch-angle ranges at E=1-100 keV/q. The proton minimum resonance energy using the obtained central frequency was consistent with the observed flux enhancements at different peak occurrence regions. We conclude that the free energy sources of EMIC waves in different geomagnetic environments drive the two different types of EMIC waves, and they interact with energetic protons at different energy ranges.

Keisuke Hosokawa

and 25 more

A specialized ground-based system has been developed for simultaneous observations of pulsating aurora (PsA) and related magnetospheric phenomena with the Arase satellite. The instrument suite is composed of 1) six 100-Hz sampling high-speed all-sky imagers (ASIs), 2) two 10-Hz sampling monochromatic ASIs observing 427.8 and 844.6 nm auroral emissions, 3) Watec Monochromatic Imagers, 4) a 20-Hz sampling magnetometer and 5) a 5-wavelength photometer. The 100-Hz ASIs were deployed in four stations in Scandinavia and two stations in Alaska, which have been used for capturing the main pulsations and quasi 3 Hz internal modulations of PsA at the same time. The 10-Hz sampling monochromatic ASIs have been operative in Tromsø, Norway with the 20-Hz magnetometer and the 5-wavelength photometer. Combination of these multiple instruments with the European Incoherent SCATter (EISCAT) radar enables us to reveal the energetics/electrodynamics behind PsA and further to detect the low-altitude ionization due to energetic electron precipitation during PsA. In particular, we intend to derive the characteristic energy of precipitating electrons during PsA by comparing the 427.8 and 844.6 nm emissions from the two monochromatic ASIs. Since the launch of the Arase satellite, the data from these instruments have been examined in comparison with the wave and particle data from the satellite in the magnetosphere. In the future, the system will be utilized not only for studies of PsA but also for other categories of aurora in close collaboration with the planned EISCAT_3D project.

Ingmar Sandberg

and 13 more