Kelsey E Roberts

and 25 more

Rising global temperatures pose significant risks to marine ecosystems, biodiversity and fisheries. Recent comprehensive assessments suggest that large-scale mitigation efforts to limit warming below crucial thresholds are falling short, and all feasible future climate projections, including those that represent ideal emissions reductions, exceed the Paris Agreement’s aspirational <1.5{degree sign}C warming target, at least temporarily. As such, there are a number of proposed climate interventions that aim to deliberately manipulate the environment at large scales to counteract anthropogenic global warming. Yet, there is a high level of uncertainty in how marine ecosystems will respond to these interventions directly as well as how these interventions may impact marine ecosystems’ responses to climate change. Due to the key role the ocean plays in regulating Earth’s climate and ensuring global food security, understanding the effects that these interventions may have on marine ecosystems is crucial. This review provides an overview of proposed intervention methodologies for solar radiation modification and marine carbon dioxide removal and outlines the potential trade-offs and knowledge gaps associated with their impacts on marine ecosystems. Climate interventions have the potential to reduce warming-driven impacts, but could also substantially alter marine food systems, biodiversity and ecosystem function. Impact assessments are thus crucial to quantify trade-offs between plausible intervention scenarios and to identify and discontinue scaling efforts or commercial implementation for those with unacceptable risks.

Holly Olivarez

and 8 more

We use a statistical emulation technique to construct synthetic ensembles of global and regional sea-air carbon dioxide (CO2) flux from four observation-based products over 1985-2014. Much like ensembles of Earth system models that are constructed by perturbing their initial conditions, our synthetic ensemble members exhibit different phasing of internal variability and a common externally forced signal. Our synthetic ensembles illustrate an important role for internal variability in the temporal evolution of global and regional CO2 flux and produce a wide range of possible trends over 1990-1999 and 2000-2009. We assume a specific externally forced signal and calculate the likelihood of the observed trend given the distribution of synthetic trends during these two periods. Over the decade 1990-1999, three of the four observation-based products exhibit small negative trends in globally integrated sea-air CO2 flux (i.e., enhanced ocean CO2 absorption with time) that are highly probable (44-72% chance of occurrence) in their respective synthetic trend distributions. Over the decade 2000-2009, however, three of the four products show large negative trends in globally integrated sea-air CO2 flux that are somewhat improbable (17-19% chance of occurrence). Our synthetic ensembles suggest that the largest observation-based positive trends in global and Southern Ocean CO2 flux over 1990-1999 and the largest negative trends over 2000-2009 are somewhat improbable (<30% chance of occurrence). Our approach provides a new understanding of the role of internal and external processes in driving sea-air CO2 flux variability.

Amanda R Fay

and 7 more

Large volcanic eruptions drive significant climate perturbations through major anomalies in radiative fluxes and the resulting widespread cooling of the surface and upper ocean. Recent studies suggest that these eruptions also drive important variability in air-sea carbon and oxygen fluxes. By simulating the Earth system using two initial-condition large ensembles, with and without the aerosol forcing associated with the Mt. Pinatubo eruption in June 1991, we isolate the impact of this event on ocean physical and biogeochemical properties. The Mt. Pinatubo eruption generated significant anomalies in surface fluxes and the ocean interior inventories of heat, oxygen, and carbon. Pinatubo-driven changes persist for multiple years in the upper ocean and permanently modify the ocean’s heat, oxygen, and carbon inventories. Positive anomalies in oxygen concentrations emerge immediately post-eruption and penetrate into the deep ocean. In contrast, carbon anomalies intensify in the upper ocean over several years post-eruption, and are largely confined to the upper 150 m. In the tropics and northern high latitudes, the change in oxygen is dominated by surface cooling and subsequent ventilation to mid-depths, while the carbon anomaly is associated with solubility changes and eruption-generated ENSO variability. Our results indicate that Pinatubo does not substantially impact oxygen or carbon in the Southern Ocean; forced signals do not emerge from the large internal variability in this region.