Stina Wahlgren

and 3 more

Kristin Zeiden

and 3 more

A fleet of surface drifters (SWIFTs) equipped with down-looking high-resolution ADCPs were used to estimate the turbulent kinetic energy (TKE) dissipation rate (ε) within highly stratified diurnal warm layers (DWLs) in the Southern California bight. Over a 10-day period, five instances of DWLs were observed with strong surface temperature anomalies up to 3 °C and velocity anomalies up to 0.3 m s-1. Profiles of ε in the upper 5 meters suggest turbulence is strongly modulated by the DWL stratification. Burst-averaged (8.5 minutes) ε is stronger than predicted by law-of-the-wall boundary layer scaling within the DWL and suppressed below. Predictions for ε within the DWL are improved by a shear-production scaling using observed shear and linearly decaying turbulent stress. However, ε is still under-predicted. Examination of the un-averaged acoustic backscatter data suggests elevated ε is related to the presence of turbulent structures in the DWL which span the layer height and strongly modulate TKE. Evolution in the bulk Richardson number each day suggests the DWLs become unstable to layer-scale overturning and entrainment each afternoon, thus the turbulent structures may result from shear-driven instability. This interpretation is supported by a conditional average of the data during a burst characterized by strongly periodic structures. The structures resemble high-frequency internal waves with strong asymmetry in the along-flow direction (steepening) which suggests they are unstable. Coincident asymmetric patterns in upwelling/downwelling and corresponding regions of strong vertical convergence/divergence suggest both vertical transport and local TKE generation are plausible sources of elevated ε in the DWL.

Emily Eidam

and 3 more

Capes and cape-associated shoals represent sites of convergent sediment transport, and can provide points of relative coastal stability, navigation hazards, and offshore sand resources. Shoal evolution is commonly impacted by the regional wave climate. In the Arctic, changing sea-ice conditions are leading to (1) longer open-water seasons when waves can contribute to sediment transport, and (2) an intensified wave climate (related to duration of open water and expanding fetch). At Blossom Shoals offshore of Icy Cape in the Chukchi Sea, these changes have led to a five-fold increase in the amount of time that sand is mobile at a 31-m water depth site between the period 1953-1989 and the period 1990-2022. Wave conditions conducive to sand transport are still limited to less than 2% of the year, however - and thus it is not surprising that the overall morphology of the shoals has changed little in 70 years, despite evidence of active sand transport in the form of 1-m-scale sand waves on the flanks of the shoals which heal ice keel scours formed during the winter. Suspended-sediment transport is relatively weak due to limited sources of mud nearby, but can be observed in a net northeastward direction during the winter (driven by the Alaska Coastal Current under the ice) and in a southwestward direction during open-water wind events. Longer open-water seasons mean that annual net northeastward transport of fine sediment may weaken, with implications for the residence time of fine-grained sediments and particle-associated nutrients in the Chukchi Sea.

Samuel Brenner

and 4 more

Increasing extent and duration of seasonally ice-free area in the western Arctic Ocean suggests increased air-sea coupling, specifically fluxes of momentum and heat between the lower atmosphere and the upper ocean. The dependence of these fluxes on ice concentration and its dynamical characteristics is still uncertain. As part of the Stratified Ocean Dynamics of the Arctic (SODA) project, year-long time series of upper-ocean velocity profiles were obtained across a range of ice conditions and are used to infer momentum fluxes. We consider the structure of observed current profiles as a function of sea state and ice cover. During the summer and in open water with minimal stratification, the wind forcing is in local equilibrium with surface gravity waves, and there is a direct transfer of momentum from the atmosphere to the upper ocean. The presence of ice modifies the momentum budget through both the inclusion of ice-atmosphere and ice-ocean stresses, and by damping short surface gravity waves and thus changing the surface roughness that the atmosphere acts upon. Ice presence is also associated with increased near-surface stratification, which can act to decouple the sub-surface ocean from atmospheric forcing. Our observations show frequent decoupling of a thin surface layer (<10 m depth), including case studies in which the relatively fresh surface waters formed by “ice puddles” have entirely different motion from the relatively salty water a few meters below. Ice formation in the fall affects both the ocean stratification and the ice characteristics, leading to competing effects affecting momentum transfer. Initial results across the annual cycle are presented.