Stephen M Griffies

and 27 more

We present the GFDL-CM4X (Geophysical Fluid Dynamics Laboratory Climate Model version 4X) coupled climate model hierarchy. The primary application for CM4X is to investigate ocean and sea ice physics as part of a realistic coupled Earth climate model. CM4X utilizes an updated MOM6 (Modular Ocean Model version 6) ocean physics package relative to CM4.0, and there are two members of the hierarchy: one that uses a horizontal grid spacing of $0.25^{\circ}$ (referred to as CM4X-p25) and the other that uses a $0.125^{\circ}$ grid (CM4X-p125). CM4X also refines its atmospheric grid from the nominally 100~km (cubed sphere C96) of CM4.0 to 50~km (C192). Finally, CM4X simplifies the land model to allow for a more focused study of the role of ocean changes to global mean climate.   CM4X-p125 reaches a global ocean area mean heat flux imbalance of $-0.02~\mbox{W}~\mbox{m}^{-2}$ within $\mathcal{O}(150)$ years in a pre-industrial simulation, and retains that thermally equilibrated state over the subsequent centuries. This 1850 thermal equilibrium is characterized by roughly $400~\mbox{ZJ}$ less ocean heat than present-day, which corresponds to estimates for anthropogenic ocean heat uptake between 1850 and present-day. CM4X-p25 approaches its thermal equilibrium only after more than 1000 years, at which time its ocean has roughly $1100~\mbox{ZJ}$ {\it more} heat than its early 21st century ocean initial state. Furthermore, the root-mean-square sea surface temperature bias for historical simulations is roughly 20\% smaller in CM4X-p125 relative to CM4X-p25 (and CM4.0). We offer the {\it mesoscale dominance hypothesis} for why CM4X-p125 shows such favorable thermal equilibration properties.

Paridhi Rustogi

and 4 more

High-frequency wind speed and wave variability influence the air-sea CO2 flux by modulating the gas transfer velocity. Traditional gas transfer velocity formulations scale solely with wind speed and ignore wave activity, including wave breaking and bubble-mediated transfers. In this study, we quantify the effects of wave-induced spatiotemporal variability on the CO2 flux and the ocean carbon storage using a wind-wave-dependent gas transfer velocity formulation in an ocean general circulation model (MOM6-COBALTv2). We find that wave activity introduces a hemispheric asymmetry in ocean carbon storage, with gain in the southern hemisphere where wave activity is robust year-round and loss in the northern hemisphere where continental sheltering reduces carbon uptake. Compared to a traditional wind-dependent formulation, the wind-wave-dependent formulation yields a modest global increase in ocean carbon storage of 4.3 PgC over 1959-2018 (~4%), but on average, enhances the CO2 gas transfer velocity and flux variability by 5-30% on high-frequency and seasonal timescales in the extratropics and up to 200-300% during storms (>15 m s-1 wind speed). This wave-induced spatiotemporal variability in CO2 flux is comparable to the flux expected from marine carbon dioxide removal (mCDR) techniques, such that neglecting wind-wave variability in modeled CO2 fluxes could hinder distinguishing between natural variability and human-induced changes, undermining mCDR verification and monitoring efforts.