Small populations of endangered species risk losing already eroded genetic diversity, important for adaptive potential, through the effects of genetic drift. The magnitude of drift can be mitigated by maximising the effective population size, as is the goal of genetic management strategies. Different mating systems, specifically those leading to reproductive skew, exacerbate genetic drift by distorting contributions. In the absence of an active management strategy, reproductive skew will have long-term effects on the genetic composition of a population, particularly where admixture is present. Here we examine the contrasting effects of conservation management strategies in two ex situ populations of the Critically Endangered eastern black rhino (Diceros bicornis michaeli), one managed as a semi-wild population in South Africa (SAx), and one managed under a mean-kinship breeding strategy in European zoos. We use molecular data to reconstruct pedigrees for both populations and validate the method using the zoo studbook. Using the reconstructed pedigree and studbook we show there is male sex-specific skew in both populations. However, the zoo’s mean-kinship breeding strategy effectively reduces reproductive skew in comparison to a semi-wild population with little genetic management. We also show that strong male reproductive skew in SAx has resulted in extensive admixture, which may require a re-evaluation of the population’s original intended role in the black rhino meta-population. With a high potential for admixture in many ex situ populations of endangered species, molecular and pedigree data remain vital tools for populations needing to balance drift and selection.

Rebecca Thomas

and 12 more

Understanding the frequency, spatiotemporal dynamics and impacts of parasite coinfections is fundamental to developing control measures and predicting disease impacts. The European turtle dove (Streptopelia turtur) is one of Europe’s most threatened bird species. High prevalence of infection by the protozoan parasite Trichomonas gallinae has previously been identified, but the role of this and other coinfecting parasites in turtle dove declines remains unclear. Using a high-throughput sequencing approach, we identified seven strains of T. gallinae, including two novel strains, from ITS1/5.8S/ITS2 ribosomal sequences in turtle doves on breeding and wintering grounds, with further intra-strain variation and four novel sub-types revealed by the iron-hydrogenase gene. High spatiotemporal turnover was observed in T. gallinae strain composition, and infection was prevalent in all populations (89–100%). Coinfection by multiple Trichomonas strains was rarer than expected (1% observed compared to 38.6% expected), suggesting either within-host competition, or high mortality of coinfected individuals. In contrast, coinfection by multiple haemosporidians was common (43%), as was coinfection by haemosporidians and T. gallinae (90%), with positive associations between strains of T. gallinae and Leucocytozoon suggesting a mechanism such as parasite-induced immune modulation. We found no evidence for negative associations between coinfections and host body condition. We suggest that longitudinal studies involving the recapture and investigation of infection status of individuals over their lifespan are crucial to understand the epidemiology of coinfections in natural populations.