Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at help@authorea.com in case you face any issues.

Mahesh Barya

and 2 more

Toxic metal-contaminated wastewater is a major environmental issue that requires a practical and cost-effective technological solution. Heavy metal phytoremediation by constructed wetland is becoming more common around the world. Plants are used in phytoremediation to degrade, stabilize, and remove contaminants from soils, water, and waste. The key issues with managing heavy metal phytoremediation plants in an environmentally appropriate manner. The design of CWs for successful phytoremediation in heavy metals contaminated wastewater should not affect the local environment. By-product generation is another crucial part of phytoremediation’s success. Phyto-management has emerged as an alternative strategy in recent years. Phytoremediating plants ( C. indica and A. calamus) biomass has been successfully used in the manufacture of 70 fly-ash bricks. High rate of Cu (96 %), Zn (95 %), (Fe 93), and Cr (91 %) removal from Canna indica and Acorus calamus were found in the present study as compared to the Typha latifoliya, Myriophylhum aquaticum, Ludwigina palustris, Eichhornia crassipes, Schoenoplectus californicus, Cyperus papyrus, and Phragmites australis which indicates C. indica is the high potential for heavy metal removal and can be strongly used for industrial wastewater. In the way, the use of ornamental plants for phytoremediation of contaminated sewage wastewater would also change the landscape of the aquatic environment. This article summarises viable avenues in the method of using phytoremediating plant biomass for environmental protection.