Intense research efforts on phylogeography over the last two decades uncovered major biogeographical trends and renewed our understandings of plant domestication in the Mediterranean. We aim to investigate the evolutionary history and the origin of domestication of the carob tree that has been cultivated for millennia for food and fodder. We used >1000 microsatellite genotypes to identify carob evolutionary units (CEUs) based on genetic diversity structure and geography. We investigated genome-wide diversity and evolutionary patterns of the CEUs with 3557 SNPs generated by restriction-site associated DNA sequencing (RADseq). The 56 populations sampled across the Mediterranean basin, classified as natural, semi-natural or cultivated, were examined. Although, RADseq data are consistent with previous studies identifying a strong West-to-East genetic structure and considerable admixture in some geographic parts, we reconstructed a new phylogeographic scenario with two migration routes occurring from a single refugium likely located in South-Western Morocco. Our results do not favour the regionally bound or single origin of domestication. Indeed, our findings support a cultivation model of locally selected wild genotypes, albeit punctuated by long-distance westward dispersals of domesticated varieties by humans, concomitant with major cultural waves by Romans and Arabs in the regions of dispersal. Ex-situ efforts to preserve carob genetic resources should prioritize accessions from both western and eastern populations, with emphasis on the most differentiated CEUs situated in South-Western Morocco, South Spain and Eastern Mediterranean. Our study underscores the relevance of natural and seminatural habitats of Mediterranean forests and their refugia in the conservation efforts of tree crops.