Anna Maria Csergo

and 10 more

Spatial isolation is a key driver of population-level variability in traits and genotypes worldwide. Geographical distance between populations typically increases isolation, but organisms face additional environmental barriers when dispersing between suitable habitat patches. Despite the predicted universal nature of the causes of isolation, global comparisons of isolation effects across taxa and geographic systems are few. We assessed the strength of isolation due to geographic and macroclimatic distance for paired marine island and paired mainland populations within the same species. Our meta-analysis included published measurements of phenotypic traits and neutral genetic diversity from 1832 populations of 112 plant and animal species at a global scale. As expected, phenotypic differentiation was higher between marine islands than between populations on the mainland, but spatial patterns of neutral genetic diversity did not vary between the two systems. Geographic distance had comparatively weak effects on the spatial patterns of phenotypes and neutral genetic diversity, but only phenotypic trait variability showed signal of system-dependence. These results suggest that spatial patterns of phenotypic variation are determined by system-dependent eco-evolutionary pressures, while the spatial variability of neutral genetic diversity might be universal. Our approach demonstrates that global biodiversity models that include island biology studies may progress our understanding of the interacting effects of spatial habitat structure, geographic- and environmental distances on biological processes underlying spatial population variability. We formulate future research directions for empirical tests and global syntheses in the field.
Dominant and non-dominant plants could be subject to different biotic and abiotic influences, partially because dominant plants modify the environment where non-dominant plants grow, causing an interaction asymmetry. Among other possibilities, if dominant plants compete strongly, they should deplete most resources forcing non-dominant plants into a more constrained niche space. Conversely, if dominant plants are constrained by the environment, they might not fully deplete available resources but instead ameliorate some of the environmental constraints limiting non-dominants. Hence, the nature of the interactions between the non-dominants could be modified by dominant species. However, when plant competition and environmental constraints have similar effects on dominant and non-dominant species no difference is expected. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (underdispersed), suggesting dominant species are likely organized by environmental filtering, and that non-dominant species were either randomly assembled or overdispersed. Traits showed similar trends, but insufficient data prevented further analyses. Furthermore, several lineages scattered in the phylogeny had more non-dominant species, suggesting that traits related to non-dominants are phylogenetically conserved and have evolved multiple times. We found some environmental drivers of the dominant—non-dominant disparity. Our results indicate that assembly patterns for dominants and non-dominants are different, consistent with asymmetries in assembly mechanisms. Among the different mechanisms we evaluated, the results suggest two complementary hypotheses seldom explored: (1) Non-dominant species include lineages adapted to thrive in the environment generated by the dominant species. (2) Even when dominant species reduce resources to non-dominant ones, dominant species could have a stronger effect on—at least—some non-dominants by ameliorating the impact of the environment on them, than by depleting resources and increasing the environmental stress to those non-dominants. The results show that the dominant–non-dominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.