Mason Stothart

and 7 more

The North American boreal forest is a massive ecosystem, and its keystone herbivore is the snowshoe hare (Lepus americanus). Hares are exposed to considerable environmental extremes in diet and weather, food availability, and predation risk. Gut microbiomes have been suggested to facilitate adaptive animal responses to environmental change, but severe environmental challenges to homeostasis can also disrupt host-microbiome relationships. To better understand gut microbiome contributions to animal acclimation, we studied the fecal bacterial microbiome of wild hares across two types of extreme environmental change that are integral to their natural history: (1) seasonal transitions between summer and winter, and (2) changes over the ~10 year “boom-bust” population cycles that are characterized by shifting food resource availability and predation pressure. When compared to summer, hares in winter had lower bacterial richness and were depleted in twenty families (including Oxalobacteraceae and Christensenellaceae) but enriched for Ruminococcaceae (a family which contains plant fibre degrading microbiota) alongside nine other bacterial groups. Marked bacterial microbiome differences also occurred across phases of the population cycle. Bacterial microbiomes were lower in richness and compositionally distinct in the peak compared to the increase or decline phases of the population cycle. Direct measures of host physiology and diet quality (fecal fibre contents) most strongly supported food resource availability as a mechanism underlying phase-based differences in bacterial communities, but fecal fibre contents could not fully account for bacterial microbiome variation across phases.

Mason Stothart

and 2 more

Mason Stothart

and 6 more

Studies of microbiome variation in the wild often emphasize host physiology and diet as proximate selective pressures acting on host-associated microbiota. In contrast, microbial dispersal is more rarely considered, and when it is, spatially autocorrelated environmental variables are sometimes overlooked. Using amplicon sequencing, we characterized the bacterial microbiome of adult female (n = 86) Sable Island horses (Nova Scotia, Canada) as part of a detailed, individual-based study of the ecology and evolution of this unmanaged free-living population. Using data on sampling date, horse location, age, parental status, and local exposure to habitat variables, we contrasted the ability of spatiotemporal, physiological, and environmental factors to explain microbiome diversity among Sable Island horses. We extended inferences made from these analyses with both phylogeny-informed and phylogeny-independent null modeling approaches to identify deviations from stochastic expectations. Phylogeny-informed diversity measures were more often correlated with local habitat composition, although null modeling results did not support differential selection acting on the microbiome as the mechanism for these correlative patterns. Conversely, phylogeny-independent diversity measures were best explained by spatial terms, with evidence for spatial- and host social-structured bacterial dispersal limitation. Parental status was important but correlated with measures of β-dispersion rather than β-diversity (mares without foals had lower alpha diversity and more variable microbiomes than mares with foals). Our results suggest that inter-host microbiome variation in this population is driven more strongly by bacterial dispersal limitation and ecological drift than by differential selective pressures, highlighting the need to consider alternative ecological processes in the study of microbiomes.