Solenn Stoeckel

and 3 more

Autopolyploidy is quite common in most clades of eukaryotes. The emergence of sequence-based genotyping methods with individual and marker tags enables now confident allele dosage, overcoming the main obstacle to the democratization of the population genetic approaches when studying ecology and evolution of autopolyploid populations and species. Reproductive modes, including clonality, selfing and allogamy, have deep consequences on the ecology and evolution of population and species. Analysing genetic diversity and its dynamics over generations is one efficient way to infer the relative importance of clonality, selfing and allogamy in populations. GENAPOPOP is a user-friendly solution to compute the specific corpus of population genetic indices, including indices about genotypic diversity, needed to analyse partially clonal, selfed and allogamous polysomic populations genotyped with confident allele dosage. It also easily provides the posterior probabilities of quantitative reproductive modes in autopolyploid populations genotyped at two-time steps and a graphical representation of the minimum spanning trees of the genetic distances between polyploid individuals, facilitating the interpretation of the genetic coancestry between individuals in hierarchically structured populations. GENAPOPOP complements the previously existing solutions, including SPAGEDI and POLYGENE, to use genotypings to study the ecology and evolution of autopolyploid populations. It was specially developed with a simple graphical interface and workflow, and comes with a simulator to facilitate practical course and teaching of population genetics for autopolyploid populations.

Méline Saubin

and 12 more

Growing genetically resistant plants allows pathogen populations to be controlled and reduces the use of chemicals. However, pathogens can quickly overcome such resistance. In this context, how can we achieve sustainable crop protection? This crucial question has remained largely unanswered despite decades of intense debate and research effort. In this study, we used a bibliographic analysis to show that the research field of resistance durability has evolved into three subfields: (i) ‘plant breeding’ (generating new genetic material), (ii) ‘molecular interactions’ (exploring the molecular dialogue governing plant–pathogen interactions) and (iii) ‘epidemiology and evolution’ (explaining and forecasting of pathogen population dynamics resulting from selection pressure(s) exerted by resistant plants). We argue that this triple split of the field impedes integrated research progress and ultimately compromises the sustainable management of genetic resistance. After identifying a gap among the three subfields, we argue that the theoretical framework of population genetics could bridge this gap. Indeed, population genetics formally explains the evolution of all heritable traits, and allows genetic changes to be tracked along with variation in population dynamics. This provides an integrated view of pathogen adaptation, notably via evolutionary–epidemiological feedbacks. In this Opinion Note, we detail examples illustrating how such a framework can better inform best practice for developing and managing genetically resistant cultivars.

Solenn Stoeckel

and 2 more

Partial clonality is widespread across the tree of life, but most population genetics models are designed for exclusively clonal or sexual organisms. This gap hampers our understanding of the influence of clonality on evolutionary trajectories and the interpretation of population genetics data. We performed forward simulations of diploid populations at increasing rates of clonality (c), analysed their relationships with genotypic (clonal richness, R, and distribution of clonal sizes, Pareto β) and genetic (FIS and linkage disequilibrium) indices, and tested predictions of c from population genetics data through supervised machine learning. Two complementary behaviours emerged from the probability distributions of genotypic and genetic indices with increasing c. While the impact of c on R and Pareto β was easily described by simple mathematical equations, its effects on genetic indices were noticeable only at the highest levels (c>0.95). Consequently, genotypic indices allowed reliable estimates of c, while genetic descriptors led to poorer performances when c<0.95. These results provide clear baseline expectations for genotypic and genetic diversity and dynamics under partial clonality. Worryingly, however, the use of realistic sample sizes to acquire empirical data systematically led to gross underestimates (often of one to two orders of magnitude) of c, suggesting that many interpretations hitherto proposed in the literature, mostly based on genotypic richness, should be reappraised. We propose future avenues to derive realistic confidence intervals for c and show that, although still approximate, a supervised learning method would greatly improve the estimation of c from population genetics data.