The collembolan Folsomia candida Willem, 1902, is an important representative soil arthropod that is widely distributed throughout the world and has been frequently used as a test organism in soil ecology and ecotoxicology studies. However, it is questioned as an ideal “standard” because of differences in reproductive modes and cryptic genetic diversity between strains from various geographical origins. In this study, we present two high-quality chromosome-level genomes of F. candida, for the parthenogenetic Danish strain (FCDK, 219.08 Mb, N50 of 38.47 Mb, 25,139 protein-coding genes) and the sexual Shanghai strain (FCSH, 153.09 Mb, N50 of 25.75 Mb, 21,609 protein-coding genes). The seven chromosomes of FCDK are each 25–54% larger than the corresponding chromosomes of FCSH, showing obvious repetitive element expansions and large-scale inversions and translocations but no whole-genome duplication. The strain-specific genes, expanded gene families and genes in nonsyntenic chromosomal regions identified in FCDK are highly related to its broader environmental adaptation. In addition, the overall sequence identity of the two mitogenomes is only 78.2%, and FCDK has fewer strain-specific microRNAs than FCSH. In conclusion, FCDK and FCSH have accumulated independent genetic changes and evolved into distinct species since diverging 10 Mya. Our work shows that F. candida represents a good model of rapidly cryptic speciation. Moreover, it provides important genomic resources for studying the mechanisms of species differentiation, soil arthropod adaptation to soil ecosystems, and Wolbachia-induced parthenogenesis as well as the evolution of Collembola, a pivotal phylogenetic clade between Crustacea and Insecta.