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Abstract

Radiative transfer parameterizations are physically important but computationally ex-

pensive components of weather and climate models. In previous work, it was demonstrated

that the gas optics module of a radiation scheme, which traditionally rely on look-up-

tables, can be replaced with neural networks (NN) to improve speed while retaining a

high degree of accuracy. However, the evaluation of the NN version of the RRTMGP gas

optics scheme (RRTMGP-NN) was based solely on offline radiation computations.

In this paper, we describe the implementation and prognostic evaluation of RRTMGP-

NN in the Integrated Forecasting System (IFS) of the European Centre for Medium-Range

Weather Forecasts (ECMWF). This was carried out by incorporating the gas optics scheme

into ecRad, the modular radiation scheme used in the IFS. New NN models were trained

on RRTMGP k -distributions with reduced spectral resolution. A hybrid loss function

helped reduce radiative forcing errors.

Four 1-year coupled ocean-atmosphere simulations were performed for each con-

figuration. The results show that RRTMGP-NN and RRTMGP produce very similar model

climates, with the differences being smaller than those between existing gas optics schemes,

and statistically insignificant for zonal means of single-level quantities such as surface

temperature. The use of RRTMGP-NN speeds up the radiation scheme by roughly a third

compared to RRTMGP, and is also faster than the older and less accurate RRTMG which

is used in the current operational cycle of the IFS.

Plain Language Summary

The use of machine learning in weather and climate models is a growing research

area, as it has the potential to reduce the computational cost of expensive simulations

and improve the representation of small-scale physical processes. However, it also faces

a multitude of challenges, such as making reliable predictions across a wide range of con-

ditions (including warmer climates), being stable, and not violating conservation laws.

In this study we use neural networks for a problem which does not incorporate physi-

cal equations and is more empirical, therefore avoiding these issues. Neural networks were

implemented in a global weather model to predict the optical properties of the atmosphere,

a component of atmospheric radiation computations that is fundamental for predicting

future changes in climate due to changes in greenhouse gas concentrations. Yearly sim-
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ulations show that this approach has no clear adverse impact compared to the original

method it replaces, while speeding up the radiation computations by around 30%.

1 Introduction

Although atmospheric radiation is well understood and very accurate solutions are

available, atmospheric models need to settle for a trade-off in the accuracy and cost of

radiation computations. This trade-off can be controlled via many factors like the tem-

poral and spatial frequency of computations (Hogan & Bozzo, 2018), simplifying assump-

tions (e.g. neglecting 3D effects), and spectral resolution (Hogan & Matricardi, 2020).

To reduce the latter, most modern radiation schemes use the correlated-k -distribution

method (e.g., Goody et al., 1989) since it allows computing broadband fluxes with high

accuracy using only O(102 - 103) quadrature points, compared with O(106 - 107) of line-

by-line methods which resolve individual spectral lines in the absorption spectra of at-

mospheric gases.

Despite this, computations remain expensive enough that many other of the afore-

mentioned approximations need to be made, and still large-scale climate simulations can

spend half of the total model runtime on radiation computations (Cotronei & Slawig,

2020). To make better use of computer resources in an era where computer hardware

is becoming more heterogenous, and the gap between the theoretical peak performance

and the performance of typical physics codes is probably increasing, machine learning

(ML) is a promising way to simultaneously address computational challenges and po-

tentially reduce model uncertainty by representing sub-grid processes more realistically.

Indeed, interest in the use of ML for parameterization of sub-grid processes has been

growing, with a particular focus on learning convection or unified physics parameteri-

zations from high-resolution simulations (Rasp et al., 2018; Brenowitz & Bretherton, 2018;

Gentine et al., 2018; Brenowitz et al., 2020; Yuval et al., 2021). Using ML specifically

for atmospheric radiation has a long history (Chevallier et al., 1998; V. M. Krasnopol-

sky et al., 2008; V. Krasnopolsky et al., 2010; Pal et al., 2019; Liu et al., 2020; Roh &

Song, 2020; Song & Roh, 2021). These studies have attempted to replace the entire ra-

diation scheme with a feed-forward neural network (FNN). An alternative approach, which

offers better accuracy at the cost of a smaller speed-up, is to keep the radiative trans-

fer solver intact and only replace the computation of gas optical properties with NNs.
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This may be justified by considering that radiation schemes solve the radiative trans-

fer equation (using the two-stream approximation) to obtain accurate estimates of broad-

band radiative fluxes. In contrast, parameterizations of other sub-grid processes, such

as convection, are often more heavily based on empirical relationships and simplified the-

ories (Wang et al., 2022). The computation of optical properties (which control the ab-

sorption, emission and scattering of radiation) within radiation schemes are likewise based

on empiricism, as they rely on look-up-tables, making it a highly suitable problem for

machine learning.

FNNs were consequently developed to emulate the RRTMGP gas optics scheme

(Pincus et al., 2019) in two different studies, which found speed-ups of 2-6x compared

to the original code (Ukkonen et al., 2020; Veerman et al., 2021). The NN gas optics was

combined with a refactored radiative transfer solver to speed up the entire radiation scheme

(without clouds or aerosols) by a factor of 1.8 - 3.5 in Ukkonen et al. (2020). Recently,

Ukkonen (2022) compared different emulation strategies for shortwave radiation, and found

that using NNs for gas optics did not sacrifice almost any accuracy, whereas replacing

the entire scheme with FNNs was the fastest but also least accurate approach, with heat-

ing rates (computed from predicted broadband fluxes) having a root-mean-square-error

(RMSE) of 1.35 K day−1. An interesting middle-ground approach was found in using

bidirectional recurrent neural networks to emulate the full radiation scheme, which pro-

duced far more accurate fluxes and heating rates (RMSE 0.16 K day−1) than FNNs while

offering a much smaller, but still significant speedup.

While these results confirm that gas optics emulation is more ready for operational

implementation than replacing the entire radiation scheme with NNs, not least due to

inherently better generalization (e.g. to arbitrary vertical grids), the evaluations were

based on offline radiation computations (Ukkonen et al., 2020; Veerman et al., 2021; Ukko-

nen, 2022). In this study, the NN version of RRTMGP (Ukkonen et al., 2020) is inte-

grated into the ecRad radiation scheme used in the Integrated Forecasting System (IFS),

which is a global numerical weather prediction model developed at the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF). New NN models are trained on

reduced RRTMGP k -distributions that recently became available, which have around

the same number of k -terms as the older RRTMG scheme that is used operationally in

the IFS. Free-running simulations are then performed in order to test the generalization

and accuracy of the NNs in a prognostic setting. In the context of wider literature on
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ML-based parameterizations, our focus on gas optics represents incrementalism and aims

for immediate application in numerical weather prediction (NWP) and climate modelling.

On the other hand, the gas optics scheme plays a very central role in climate models as

pointed out by Hogan and Matricardi (2022) and is computationally a significant part

of the full radiation scheme (Ukkonen et al., 2020; Hogan & Bozzo, 2018).

The structure of the paper is as follows: Section 2 briefly describes the ecRad and

RRTMGP-NN codes, and the implementation of RRTMGP-NN in ecRad. Section 3 pro-

vides an overview of the machine learning methodology, which has been refined to re-

produce radiative forcings with respect to individual gases more accurately. The results

are then presented in Section 4, consisting of an offline evaluation, and a prognostic eval-

uation where the impact of the new gas optics schemes (RRTMGP and RRTMGP-NN)

on model climate is determined using year-long IFS simulations.

2 Codes

2.1 ecRad

ecRad is a radiation scheme developed at ECMWF and used operationally in the

IFS since 2017 (Hogan & Bozzo, 2018). It is highly configurable with multiple options

for gas optics, cloud optics, aerosol optics, and radiative transfer solvers which represent

cloud heterogeneity in different ways and support various cloud overlap assumptions.

2.2 RRTMGP

RRTMGP is a recent gas optics scheme with a correlated k -distribution that is based

on state-of-the-art spectroscopy. It it part of a freely available toolbox, RTE+RRTMGP,

that also includes a radiative transfer solver (RTE). The radiation scheme seeks to bal-

ance accuracy, efficiency and flexibility and both the code and data continue to evolve

(Pincus et al., 2019). The original RRTMGP k -distributions have a relatively large num-

ber of k -terms, also known as g-points: 224 in the shortwave (SW) and 256 in the long-

wave (LW), corresponding to 16 in each SW and LW band. More recently, reduced k -

distributions with half the number of g-points (112/128) have been generated from the

full distributions. This was done using the same approach as in the evolution from the

RRTM scheme (Mlawer et al., 1997) to its reduced-resolution version designed for GCMs,

RRTMG (Iacono et al., 2000), namely by iteratively combining neighboring g-points while

–5–



manuscript submitted to Journal of Advances in Modeling Earth Systems

attempting to minimize a cost function that includes fluxes, forcing, and heating rates

(R. Pincus and E. Mlawer, personal communication, May 24, 2022). The reduction in

g-points was similar in both cases; RRTMG, which is used operationally in the IFS, has

112/140 g-points.

As the number of g-points gives the number of pseudo-monochromatic radiative

transfer calculations, it largely determines the cost of the whole radiation scheme. The

NNs developed in this paper are therefore based on the new reduced k -distributions (”Reduced-

RRTMGP”), and not the k -distributions with higher spectral resolution (”Full-RRTMGP”).

2.3 RRTMGP-NN and implementation in ecRad

RRTMGP-NN is a neural network version of RRTMGP described in Ukkonen et

al. (2020), available with a refactored version of the RTE solver which has columns as

the outermost dimension (in terms of memory location) instead of g-points outermost.

The modified radiation scheme is referred to as RTE+RRTMGP-NN and like the orig-

inal code, it is written in modern Fortran. The simple yet efficient NN kernel is based

on BLAS routines for batched inference, exploiting the lack of vertical and horizontal

dependencies - this means that gas optics computations are highly parallel. (The code

can also be run on GPUs, in this case NVIDIA cuBLAS is used for the matrix multi-

plications and OpenACC directives are wrapped around the few remaining computations.)

RRTMGP-NN previously loaded models from ASCII files like the Neural-Fortran

code (Curcic, 2019) that it is built upon. We have refined the code so that models are

loaded from netCDF files, which contain not only the weights and activation functions,

but also coefficients used for scaling inputs and outputs, as well as metadata about the

training data. These files could in the future be expanded to replace the k -distribution

files in their entirety, keeping relevant metadata and the look-up-table coefficients used

to compute Planck sources from Planck fraction and temperature.

We now briefly describe the integration of RRTMGP into ecRad. The goal was to

avoid larger changes in ecRad. However, since RTE+RRTMGP makes heavy use of For-

tran derived types to specify e.g. gas concentrations and optical properties, use of ex-

isting RRTMGP interfaces would imply a significant amount of array copying to com-

municate between ecRad and RRTMGP derived types. Large changes in RRTMGP are

not desirable either, because they reduce maintainability of the gas optics code.
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With these conflicting goals in mind, a balance was sought with non-intrusive changes

in both codes, but prioritizing minimal changes in ecRad. Firstly, the refactored radi-

ation scheme with neural networks, RTE+RRTMGP-NN, was implemented instead of

the reference gas optics code to make direct use of existing NN code. This has the ad-

vantage that RTE+RRTMGP-NN uses the same dimension order as ecRad with opti-

cal properties having g-points innermost and columns as the outermost dimension, re-

moving the need for expensive array transposes (Ukkonen et al., 2020). While the NN

fork of RTE+RRTMGP is currently only maintained by one person, the code is very sim-

ilar to RTE+RRTMGP. The k -distributions are loaded from netCDF files which can be

copied over as new ones are made available in the main repository.

The entirety of the RTE+RRTMGP-NN package was then added as an ecRad sub-

directory (this was necessary because RRTMGP depends on RTE). The source code of

RTE+RRTMGP(-NN) is kept separate: it does not use any of the ecRad modules. In-

stead, new interfaces were written for RTE+RRTMGP-NN for easy interoperability with

ecRad while avoiding having to copy larger arrays. For instance, the new interface for

the longwave (gas optics int ecRad) replaces the derived type arguments of the original

RRTMGP interface, containing optical properties and Planck sources, with explicit shape

arrays that are used in ecRad. The computational kernels remain the same, as in ref-

erence RRTMGP they do not use derived types. In ecRad, another interface is then used

which prepares the RRTMGP-NN gas concentrations (columns outermost) by transpos-

ing the ecRad gases (columns innermost) and calls gas optics int ecRad (longwave) and

gas optics ext ecRad (shortwave). ecRad has similar interfaces to the RRTMG and ec-

CKD (Hogan & Matricardi, 2022) gas optics schemes. The overhead from transposing

the gases and thermodynamic arrays is very small.

3 Machine learning

In training NNs to emulate RRTMGP, we use a similar methodology as in Ukkonen

et al. (2020), where detailed offline evaluation against line-by-line computations suggested

a similar level of accuracy in overall fluxes and heating rates as the original scheme, de-

spite using fairly simple NN models with two hidden layers and 16-48 neurons in each

hidden layer. The choice of outputs, loss function, model optimization, and NN complex-

ity are changed slightly as described in the next sections.
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3.1 Data

We use similar training data as in Ukkonen et al. (2020), in which a diverse and

extensive data set was prepared from several sources, including atmospheric profiles used

in previous radiation studies, as well as data from future climate experiments and a re-

analysis. These initial data sets were synthetically supplemented, or extended, by vary-

ing greenhouse gas concentrations both manually and by using Hypercube sampling. The

data in this study differs from Ukkonen et al. (2020) principally in two ways. Firstly, data

provided by the Radiative Forcing Model Intercomparison Project (RFMIP, Pincus et

al., 2016), comprising of 100 profiles and 18 perturbation experiments, now serves as an

independent validation dataset used for early-stopping (section 3.3) instead of training.

These profiles were designed to assess global mean clear-sky errors in instantaneous ra-

diative forcing and should be well-suited as an out-of-sample test for our purposes. Sec-

ondly, a different dataset based on the CAMS reanalysis (Inness et al., 2019) is used. The

new CAMS data uses the same approach as the IFS and the Correlated k -distribution

Model Intercomparison Project (CKDMIP, Hogan & Matricardi, 2020), where only nine

gases are considered, but the radiative forcing of many minor greenhouse gases is rep-

resented by artificially increasing the concentration of CFC-11 (?, ?). The height depen-

dence of these gases is represented, and other RRTMGP gases are set to zero. (Neither

of these generally applies to the other subsets of the training data, where all minor RRT-

MGP gases are included, but as scalar concentrations).

The reanalysis profiles are designed to encompass the variability in present-day at-

mospheric conditions, with the following steps taken to increase variance and capture

extremes. Starting from an initial pool of roughly 164 000 profiles spanning global re-

analysis data from 2008 and 2017 and interpolated to a 320 km resolution equal-area grid

Ukkonen (2022), 1000 profiles were drawn. Of these, 17 were selected to contain the min-

imum and maximum of temperature, humidity and ozone at different pressure levels (a

total of 9 variables) in the whole dataset, similarly to Hogan and Matricardi (2020). An-

other 486 profiles were selected by constructing k = 81 k-means clusters which are clus-

tered in the 9 dimensions represented by the variables in the previous step. From each

cluster, which the k -means algorithm ensures are as different to other clusters as pos-

sible, 6 random profiles were selected. The remaining roughly 500 profiles were randomly

drawn from the entire dataset minus ones already chosen. Vertical profiles selected by

the minimum-maximum, semi-random and random method are depicted in Fig. 1.
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The 1000 CAMS profiles were then expanded into 42 experiments or scenarios where

CH4, N2O, CFC11-eq and CFC12 are varied similarly to Hogan and Matricardi (2020).

The 1000 × 42 × 60 (layers) ≈ 2.5 million samples make up roughly 47% of the 5.42 mil-

lion training samples in total. The remaining parts comprise i) end-of-century CMIP6

data corresponding to a high-emissions scenario, ii) profiles from the ”mean-maximum-

minimum” CKDMIP dataset, and iii) 42 profiles used for tuning RRTMGP; all of which

were expanded into up to hundreds of experiments as described in Ukkonen et al. (2020).

3.2 Choice of inputs and outputs

Our RRTMGP emulator predicts layer-wise optical properties from an input vec-

tor which contains gas mixing ratios, temperature, and log-pressure. The NNs take as

input all the RRTMGP gases and output all g-points, which results in better compu-

tational intensity and efficiency than computing one band at a time, and the contribu-

tions from minor gases one gas at a time, as is done in the look-up-table (LUT) kernels

in RRTMGP (Ukkonen et al., 2020). In the shortwave (SW), the NN outputs are ab-

sorption and Rayleigh cross-sections, while the longwave (LW) predictands are absorp-

tion cross-section and Planck fraction. Here, cross-sections refers to optical depth divided

by the number of dry air molecules in a layer N. This allows generalization to arbitrary

vertical grids, since optical depths are obtained in a separate step by multiplying the cross-

sections with N. Meanwhile, Planck fraction is the fraction of a band’s total Planck func-

tion that is associated with each LW g-point, obtained by 3D interpolation in the orig-

inal code. Like in RRTMGP, this is multiplied with the band-integrated Planck func-

tion at a level or layer (interpolated from a LUT using the temperature of that level/layer)

to get the Planck function for each LW g-point. This retains a small LUT interpolation,

but simplifies the NN model by requiring only ng outputs, instead of 3×ng to directly

predict the Planck functions used in reference RRTMGP, or 2× ng to get the Planck

functions in RRTMGP-NN. (The original code has one Planck variable for each layer and

two for each layer interface, the upward and downward emission, whereas RTE+RRTMGP-

NN has one for each layer and layer interface. ecRad only uses one Planck function, de-

fined at layer interfaces). Reducing the number of NN outputs can decrease model com-

plexity and runtimes, since most of the floating point operations occur in the final NN

layer given Ngpt > Nneurons > Ninputs. However, in this work a single LW model is

used which predicts both absorption cross-sections and Planck fractions as one big vec-
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tor. This may not be the fastest approach but has the benefit of easing the optimiza-

tion procedure described in the next section.

In addition to predicting cross-sections instead of optical depths, to obtain good

results with less complex models it is useful to pre-process both inputs and outputs. Specif-

ically, square root transformations are used for all outputs and some inputs to make their

distributions more uniform, and afterwards the inputs are scaled to the 0-1 range and

outputs are scaled to have roughly zero mean and unit variance by using a variant of stan-

dardization that preserves correlations between different outputs (Ukkonen et al., 2020).

3.3 Should we optimize for fluxes when predicting optical properties?

Training gas optics ML models presents a tuning challenge, as the variables we ul-

timately care about are not optical properties but radiative fluxes and heating rates -

outputs from the solver. We previously found it relatively easy to develop gas optics NNs

which upon implementation in the radiation code result in low mean errors in fluxes and

heating rates, but difficult to obtain accurate radiative forcings at the top-of-atmosphere

or surface with respect to changes in the concentration of individual gases, especially mi-

nor ones (Ukkonen et al., 2020). The problem is likely to stem from predicting aggre-

gated optical properties, instead of computing the contribution from minor gases sep-

arately (as is usually done in k -distributions), which is more efficient but leads to ma-

jor gases dominating the loss function. Mostly accurate radiative forcings for CKDMIP

gases were ultimately obtained via a time-consuming, iterative process where new mod-

els were continuously trained, evaluated, and the training data expanded. In this work

we have attempted to automate the optimization with regards to fluxes, heating rates

and forcings to at least some extent by adding two new techniques to the training method-

ology.

Firstly, errors in fluxes and heating rates were monitored during training. While

these metrics can not be easily be used for optimizing the NN weights, they can be used

as a criteria to know when to stop training (early-stopping), or to optimize NN hyper-

parameters. Therefore, a Python training program was written where at the end of ev-

ery epoch, the NN models are saved to a file, and the Fortran radiation program is called

with the new model, passing the location as a command-line-argument. The Fortran pro-

gram runs RTE+RRTMGP-NN on a validation dataset, and writes some error metrics
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to standard output, which are finally read by the training program. For validation we

used the RFMIP dataset consisting of 100 profiles and 18 different perturbation exper-

iments, which allowed computing radiative forcing errors with respect to CH4, N2O, and

total forcing errors with respect to all RRTMGP gases. In addition, a benchmark line-

by-line solution was available for this data, meaning that the total (parameterization)

error can be determined instead of only emulation (NN) error. Our goal was to develop

NNs that have a similar level of accuracy as RRTMGP; that is, emulation errors should

be smaller than parameterization errors. The error metrics were normalized by the RRT-

MGP values, so that a value of one indicates the same level of performance as RRTMGP,

and larger values indicate worse performance. An overall ”radiation error” was computed

by taking the RMS value of a total of 8 metrics which differ slightly for the longwave and

shortwave (Table 1). This overall metric was used in the early stopping criteria and the

model weights from the best epoch (a minimum in the metric) were saved.

Metric Longwave Shortwave

MAE Heating rate X X

MAE Heating rate (present-day) X X

MAE Heating rate (preindustrial) X

MAE Heating rate (”future-all”) X

Bias surface downwelling flux X

Bias TOA upwelling flux X

Bias TOA IRF (present-day - preindustrial) X

Bias TOA IRF (future - present-day) X

Bias TOA IRF (future - preindustrial) X

Bias surface IRF (future - preindustrial) X X

Bias surface IRF CH4 (present-day - preindustrial) X X

Bias surface IRF N2O (present-day - preindustrial) X

Table 1: Metrics that comprise the overall ”radiation error”. TOA = top of atmosphere,

IRF = instantaneous radiative forcing, ”future-all” = a radiative forcing experiment with

perturbed atmospheric conditions in addition to greenhouse gas concentrations.
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Secondly, a custom loss function was devised to minimize the error in the differ-

ence in y associated with different perturbation experiments, in addition to mean-squared-

error of y, where y are the scaled NN outputs. The new loss function indirectly measures

radiative forcing errors (albeit weakly due to a non-linear dependence between spectral

optical properties and broadband fluxes) and has the form:

loss = α

N∑
i=1

(yi − ŷi)
2 + (1− α)

N∑
i=1
i odd

(
(yi+1 − yi)− (ŷi+1 − ŷi)

)2

,

where y and ŷ are the target and NN output vectors, respectively, and α is a co-

efficient that was set to 0.6 for LW and 0.2 for SW after some testing. The second term

measures the error in the difference in y between different perturbation experiments if

the data is organized so that adjacent samples (of a total N training samples) correspond

to different experiments but the same columns and vertical layers, which was achieved

by transposing the data so that the experiment dimension is innermost. In addition, the

experiments should be designed so that every odd element and its neighbour relate to

the goal, which was minimizing the TOA and surface forcing errors of individual gases.

Therefore, RFMIP-style experiments such as present-day versus future concentrations

of all greenhouse gases, or 8X CO2 versus preindustrial CO2, should be avoided, as they

can easily dominate the error compared to varying the concentration of minor greenhouse

gases (which was the challenge to begin with). This requirement was only partially ful-

filled since we wanted to make use of existing data. Though rather convoluted, and re-

quiring bespoke data, the approach does reduce forcing errors (Figure 2).

In the end, there was still a substantial random element in results obtained, and

several models were trained before settling on the final models (based on errors with re-

spect to training data, and not the independent offline evaluation, which was only per-

formed once). To obtain a satisfactory LW model the early-stopping criteria was loos-

ened to 70 consecutive epochs of no improvement. (Depending on the desired level of ac-

curacy for the radiative forcings, it may be possible to obtain adequate results without

a hybrid loss function by simply training for a very large number of epochs, at the risk

of overfitting if the training data is not very extensive.) In addition, increasing the num-

ber of hidden neurons compared to Ukkonen et al. (2020) seemed to improve results slightly.

The final LW model has 64 neurons in two hidden layers, and the SW models have 32
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neurons in two hidden layers. All models use the ”softsign” activation function and were

trained using the Adam optimizer, a batch size of 2048 and learning rate of 0.01.

Future studies could explore directly minimizing flux and forcing errors when train-

ing NN-based gas optics models. Doing this via gradient descent optimization would re-

quire differentiating the radiative transfer solver to obtain the derivative of fluxes with

respect to changes in optical properties (and NN weights), which should be possible us-

ing automatic differentiation tools like the Python library JAX (Bradbury et al., 2018)

if the radiative transfer code to be re-written in the supported language or API (JAX,

for instance, has an API based on NumPy).

4 Results

In this section we evaluate the accuracy and speed of ecRad with different gas op-

tics schemes (RRTMGP, RRTMGP-NN, and the older RRTMG scheme) in both an of-

fline and online setting. The results were obtained using an optimized development ver-

sion of ecRad which refactors the Tripleclouds (Shonk & Hogan, 2008) and SPARTA-

CUS (Hogan et al., 2016) solvers for better efficiency and includes the new RRTMGP(-

NN) gas optics. Another optimization is that reflectances and transmittances are com-

puted in the same numerical precision as the rest of the model (in the current operational

version of ecRad, these two-stream computations are always performed in double pre-

cision), which improves the single-precision performance of all solvers in ecRad. The op-

timizations, which are described in a forthcoming paper, have a negligible impact on fluxes

and heating rates while making Tripleclouds significantly cheaper, and thus increase the

share of the gas optics in the total runtime of ecRad.

The prognostic evaluation and offline timings were obtained with an ecRad con-

figuration close to operational IFS Cycle 47r3, which is similar to the 46r1 settings given

in Table 2 of Hogan and Bozzo (2018), except for replacement of the pure exponential

cloud overlap assumption with “exponential-random” whereby an vertically contiguous

cloud layers are partially correlated but cloud layers separated by clear sky are randomly

overlapped. Furthermore, we replace the McICA solver with Tripleclouds due to the lat-

ter being noise-free and a likely candidate for operational use in a near-future cycle.

It should be noted that the RRTMGP results were not produced using the orig-

inal RTE+RRTMGP package, which uses two Planck source functions for half-levels which
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are then combined into one, and the LW results (Figures S1-S4 in Supporting Informa-

tion S1) could be very slightly impacted by the simpler computation of Planck source

in RRTMGP-NN. For simplicity the RRTMGP-NN code configured with look-up-tables

and not NNs is hereafter referred to as RRTMGP.

4.1 Speed-up

The runtime of ecRad with different gas optics schemes was evaluated offline us-

ing 10,000 input profiles that were saved from a benchmark forecast run in the IFS, and

a block size of 8 columns (equal to the block size ”NPROMA” in the IFS). Figure 3 shows

timing results obtained on a single node of the new ECMWF AMD-based supercomputer

in Bologna, to which the migration of ECMWF’s operational forecast is expected later

in 2022.

With Reduced-RRTMGP, the runtime of ecRad is increased slightly due to the new

gas optics (shown in light blue) being more expensive than the older RRTMG scheme,

which is faster by a factor of 1.67 despite the similar spectral resolution. The poor ef-

ficiency of RRTMGP is explained by short inner loops in the LUT code, where inner loops

are over g-points in a band (only 12-16 for the smaller k-distributions), leading to poor

vectorization. However, the NN version of Reduced-RRTMGP is 2.36 times faster than

the LUT-based code, and also faster than the old RRMTG scheme, leading to a total

speedup of the radiation code by a factor of 1.13 compared to operationally used RRTMG.

4.2 Offline evaluation

Independent validation of the NN gas optics models was carried out by using data

and tools from CKDMIP (Hogan & Matricardi, 2020). The data are from the ‘Evaluation-

1’ dataset, which was not used for training. The accuracy of the new RRTMGP-NN SW

model, relative to a line-by-line benchmark, is first shown in Figure 4 for the present-

day scenario. The NN has almost identical accuracy as the Reduced-RRTMGP scheme

it was trained on (Fig. 5), particularly in terms of heating rates, which in both cases have

an RMSE of only 0.056-0.057 K d−1 below 4 hPa. Surprisingly, the upwelling flux bias

and root-mean-square errors are actually smaller when using NNs. Results using the other

CKDMIP concentration scenarios (Glacial Maximum, Preindustrial, and Future) are not
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presented here but are very similar, with the NN gas optics resulting in better upwelling

fluxes but similar heating rates.

In general, the close emulation of RRTMGP was already demonstrated in Ukkonen

et al. (2020) and so the remaining results are not discussed here, but the LW results for

present-day and future scenarios are provided in Supporting Information S1 (Figures S1-

S4). The most significant difference to the earlier paper is that the top-of-atmosphere

and surface forcings with respect to N2O, CFC11 and CFC12 have been improved with

the help of a hybrid loss function and are now excellent (Fig. 6). We note that the new

Reduced-RRTMGP k -distributions with 112 (SW) and 128 (LW) g-points seem to trade

only a little accuracy for a lot of speed compared to the original k -distributions with al-

most double the g-points (https://confluence.ecmwf.int/display/CKDMIP), with the

exception of LW heating rates in the mesosphere which are considerably worse for Reduced-

RRTMGP.

4.3 Prognostic evaluation

We now describe results from a prognostic evaluation of RRTMGP-NN and RRT-

MGP using 1-year free-running simulations with the IFS model. The model simulations

consisted of four atmosphere-ocean coupled simulations 13 months long initialized on 1

August of the years 2000, 2001, 2002 and 2003. After a 1-month spin-up for each sim-

ulation, the remaining 12 months were averaged over each simulation. This configura-

tion is very similar to that used in section 5 of Hogan and Bozzo (2018) to evaluate the

impact of changes to the radiation scheme; the simulations are long enough to capture

fast atmospheric and land-surface processes that respond to changes in the treatment

of radiative transfer, but short enough that the response is not significantly affected by

the longer-term changes to ocean circulation. The one-year forecast length also matches

the longest operational forecast length used in ECMWF’s seasonal forecasts. The model

configuration was as in operational IFS model cycle 47r3 except for the use of the Triple-

clouds rather than McICA solver. The horizontal resolution was TCo199 (around 60 km)

and 137 vertical levels were used. The radiation scheme was called every hour.

The impact of different gas optics schemes on annual-mean temperature from the

surface to the lower mesosphere is shown in Figure 7. Because RRTMGP is not, to our

knowledge, routinely tested in single precision, both single and double precision runs were
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performed with both Reduced-RRTMGP and Full-RRTMGP. The NN version of Reduced-

RRTMGP was only tested in single precision (internally, RRTMGP-NN always uses SP,

as higher numerical precision does not benefit NNs). In general, larger differences be-

tween the runs are only seen in the mesosphere and upper stratosphere, which are very

sensitive to heating-rate differences. Comparison against a reference dataset based on

the Microwave Limb Sounder (MLS) instrument above 20 hPa, and ERA5 reanalysis data

below this level is depicted in Fig. 7 (b) and shows a 5-K warm bias in the upper strato-

sphere for RRTMG, and larger in the mesosphere. The same bias was reported by Hogan

et al. (2017), which they explained by the use of the older ‘Kurucz’ solar spectrum in

the RRTMG version used in ecRad. RRTMGP uses a more recent solar spectrum with

less ultraviolet radiation, resulting in closer agreement with MLS. In the mesosphere, RRTMGP-

NN is clearly closer to the Reduced-RRTMGP scheme it is emulating than Reduced-RRTMGP

is to Full-RRTMGP (Fig. 7 (c)). This strongly suggests that the emulation errors are

small enough to be acceptable.

A height-latitude cross section of temperature likewise shows larger differences be-

tween the old RRTMG scheme and RRTMGP than between different RRTMGP con-

figurations and the NN version (Fig. 8). A strong warm bias in the stratosphere is ev-

ident for RRTMG but less so for any version of RRTMGP, although the RRTMGP(-NN)

runs do show a weaker upper-stratospheric warm bias over high latitudes and a substan-

tial cold bias in the tropical stratosphere.

Finally, Fig. 9 compares annual/zonal means of 2-m temperature, TOA net LW and

SW fluxes, and downwelling SW flux between simulations using different gas optics con-

figurations. In general the differences relative to Full-RRTMGP are statistically insignif-

icant as the means fall within the error bars computed from the 4-year sample. The only

clear exception is RRTMG, which, for instance, at lower latitudes has significantly larger

surface downwelling SW flux and smaller LW flux than Full-RRTMGP. These findings

are consistent in sign and approximate magnitude with the evaluation of RRTMG against

line-by-line calculations by Hogan and Matricardi (2020), although it should be stressed

that these differences of 0–2 W m−2 are still very modest.
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5 Conclusions

In this paper we have evaluated RRTMGP-NN, a neural network version of the RRT-

MGP gas optics scheme, integrated into ECMWF’s radiation scheme ecRad, by using

both offline calculations and by performing four 1-year simulations with the free-running

IFS model. Emulating only the gas optics component, instead of the full radiation scheme

like in previous work, results in much better accuracy at the cost of a (much) smaller

speed-up. The NN models were trained on diverse datasets which cover a wide range of

gas concentrations and atmospheric conditions (including pre-industrial, present-day and

future conditions), and a hybrid loss function was utilized to reduce radiative forcing er-

rors. In offline timings obtained on ECMWF’s AMD-based supercomputer, using RRTMGP-

NN makes ecRad roughly a third faster compared to RRTMGP.

The results from the online evaluation are highly encouraging as they show very

similar model climates for RRTMGP and RRTMGP-NN. Global/annual mean temper-

ature profiles for the reduced-spectral-resolution RRTMGP and its NN emulator are in

closer agreement than different versions of RRTMGP are to each other, and all of these

schemes, including RRTMGP-NN, substantially reduce stratosphere and mesosphere tem-

perature biases relative to the older RRTMG scheme. In single-level fields, the differ-

ences between RRTMGP-NN and RRTMGP are obscured by natural variability. This,

combined with virtually identical results for the two schemes in the offline evaluation,

demonstrates that our RRTMGP-NN models are generally suitable for operational weather

and climate models. The evaluations were based on a setup with a reduced set of LW

gases (using artificially increased CFC-11 concentrations to represent further gases); for

applications where the individual radiative forcings of other RRTMGP minor greenhouse

gases are of importance, such metrics can be evaluated offline and new NN models trained

if needed. The data and tools are freely available and should be useful for future work

on radiation emulators.

6 Open Research

RTE+RRTMGP-NN is available on Github (https://github.com/peterukk/rte

-rrtmgp-nn); the Fortran programs and Python scripts used are found in the /examples/rrtmgp-

nn-training subdirectory. The data and an archived version of RTE+RRTMGP-NN have

been uploaded to Zenodo (https://doi.org/10.5281/zenodo.6576680).
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Hogan, R. J., Schäfer, S. A., Klinger, C., Chiu, J. C., & Mayer, B. (2016). Rep-

resenting 3-d cloud radiation effects in two-stream schemes: 2. matrix formu-

lation and broadband evaluation. Journal of Geophysical Research: Atmo-

spheres, 121 (14), 8583–8599.

Iacono, M. J., Mlawer, E. J., Clough, S. A., & Morcrette, J.-J. (2000). Impact of

an improved longwave radiation model, rrtm, on the energy budget and ther-

modynamic properties of the ncar community climate model, ccm3. Journal of

Geophysical Research: Atmospheres, 105 (D11), 14873–14890.

Inness, A., Ades, M., Agusti-Panareda, A., Barré, J., Benedictow, A., Blechschmidt,
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Figure 1: Vertical profiles of temperature, water vapor and ozone selected from the

CAMS data as described in Sect. 3.1. The top panel shows 486 random profiles (black),

and the bottom panel shows 486 profiles drawn from k-means clusters (black) and 17 that

were selected to sample minimum and maximum values (blue).
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Figure 2: Monitoring of heating rate error (dashed cyan line, given by the mean of the

heating rate metrics in Table 1), and the total radiation error (solid blue line, given by

the RMS of the metrics listed in Table 1) when training the final LW gas optics model

using a hybrid loss function and early stopping (top), and training for the same number

of epochs with a regular loss function (bottom). The monitored errors (right axis) are

computed using the RFMIP data with respect to line-by-line results and normalized by

the RRTMGP value. Also shown are the training losses (solid and dashed red lines). The

larger radiation error when not using the hybrid loss function (b) was largely due to a

single metric, the surface radiative forcing of N2O (not shown).
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Figure 3: Runtime of ecRad in single precision per 100 atmospheric profiles, broken down

by component. Three gas optics schemes are compared: RRTMGP scheme with reduced

spectral resolution (112 SW and 128 LW g-points), its neural network version (RRTMGP-

NN), and the older RRTMG scheme with 112 (SW) and 140 (LW) g-points. The runs

were repeated 10 times and the values for each component were computed by taking

the average of the per-thread values reported by the General Purpose Timing Library.

CPU: 64-core AMD Epyc Rome. Software platform: GNU Fortran compiler version 9.3

and Intel MKL library 19.0.5 (used for general matrix-matrix multiplication (GEMM) in

RRTMGP-NN)
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Scenario: Present-day (2020)

CKD model: RRTMGP-NN

Bias TOA upwelling: -0.18 W m
-2

Bias surface downwelling: -0.39 W m
-2

RMSE TOA upwelling: 0.24 W m
-2

RMSE surface downwelling: 0.80 W m
-2

RMSE heating rate (0.02-4 hPa):  0.257 K d
-1

RMSE heating rate (4-1100 hPa):  0.056 K d
-1

Figure 4: Evaluation of Reduced-RRTMGP-NN shortwave fluxes and heating rates using

the 50 independent profiles of the CKDMIP Evaluation-1 dataset with present-day con-

centrations of greenhouse gases. The left column (a, d, g) shows the reference profiles of

upwelling flux, downwelling flux and heating rate from LBL calculations with five different

values of the cosine of the solar zenith angle, µ0 (0.1, 0.3, 0.5, 0.7 and 0.9). The middle

column (b, e, h) shows the corresponding biases (solid lines) and 95th percentile of errors

(shaded area) using all 250 data points. The right column (c, f) depicts instantaneous

errors in upwelling TOA and downwelling surface fluxes with the clusters corresponding to

the different solar zenith angles.
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Figure 5: As in Fig. 4 but for Reduced-RRTMGP.
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Figure 6: Comparison of RRTMGP-NN and reference LBL calculations of instantaneous

longwave clear-sky radiative forcing at top of atmosphere (left column) and surface (right

column) when perturbing different greenhouse gases (rows), averaged over the 50 profiles

in the CKDMIP Evaluation 1 dataset.
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Figure 7: Evaluation of global/annual-mean temperature profiles from free-running sim-

ulations by the IFS. (a) Mean temperature, (b) difference against a reference dataset con-

sisting of the MLS climatology above the 20-hPa height level and ERA5 below this level,

and (c) difference against a simulation using full-resolution RRTMGP in double precision.

The small horizontal bars give the 95% confidence interval as computed from differences

between different years. As indicated in the legend, the simulations were performed in

double or single precision (DP or SP) using the full- or reduced-resolution RRTMGP, the

NN emulation of (reduced-)RRTMGP, or the older RRTMG gas optics scheme.
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Figure 8: Similar to Fig. 7 but showing the the height-latitude cross section of mean

temperature (black contours) and temperature difference (colors) against the reference

datasets, and only until 1 hPa.
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Figure 9: Zonal mean of different single-level quantities using the reference Full-

RRTMGP run in double precision (a, c, e, g, i) and differences relative to this run (b,

d, f, h, j) with the vertical lines indicating the 95% confidence interval: (a, b) 2-m temper-

ature, (c, d) TOA net SW flux (where net is defined as downwelling minus upwelling), (e,

f) TOA net LW flux, (g, h) surface downwelling SW flux, and (i, j) surface downwelling

LW flux.
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