Cited literature

Accolla, C., Vaugeois, M., Grimm, V., Moore, A.P., Rueda-Cediel, P., Schmolke, A., et al. (2021). A review of key features and their implementation in unstructured, structured, and agent-based population models for ecological risk assessment. Integrated Environmental Assessment and Management , 17, 521–540. Amstrup, S.C., Marcot, B.G. & Douglas, D.C. (2008). A Bayesian network modeling approach to forecasting the 21st century worldwide status of polar bears. In: Arctic sea ice decline: Observations, projections, mechanisms, and implications . American Geophysical Union, pp. 213–268. Andersen, D., Yi, Y., Borzée, A., Kim, K., Moon, K.-S., Kim, J.-J.,et al. (2022). Use of a spatially explicit individual-based model to predict population trajectories and habitat connectivity for a reintroduced ursid. Oryx , 56, 298–307. Auger-Méthé, M., Newman, K., Cole, D., Empacher, F., Gryba, R., King, A.A., et al. (2021). A guide to state–space modeling of ecological time series. Ecological Monographs , 91, e01470. Baker, L., Matthiopoulos, J., Müller, T., Freuling, C. & Hampson, K. (2020). Local rabies transmission and regional spatial coupling in European foxes. PLoS ONE , 15, e0220592. Banks, J.E., Laubmeier, A.N. & Banks, H.T. (2020). Modelling the effects of field spatial scale and natural enemy colonization behaviour on pest suppression in diversified agroecosystems. Agricultural and Forest Entomology , 22, 30–40. Bastos, R., Pinhanços, A., Santos, M., Fernandes, R.F., Vicente, J.R., Morinha, F., et al. (2016). Evaluating the regional cumulative impact of wind farms on birds: how can spatially explicit dynamic modelling improve impact assessments and monitoring? Journal of Applied Ecology , 53, 1330–1340. Baudrot, V., Fernandez-de-Simon, J., Coeurdassier, M., Couval, G., Giraudoux, P. & Lambin, X. (2020). Trophic transfer of pesticides: The fine line between predator–prey regulation and pesticide–pest regulation. Journal of Applied Ecology , 57, 806–818. Beissinger, S.R. & Westphal, M.I. (1998). On the use of demographic models of population viability in endangered species management.The Journal of wildlife management , 821–841. Berger, A., Barthel, L.M., Rast, W., Hofer, H. & Gras, P. (2020). Urban hedgehog behavioural responses to temporary habitat disturbance versus permanent fragmentation. Animals , 10, 2109. Billoir, E., Péry, A.R.R. & Charles, S. (2007). Integrating the lethal and sublethal effects of toxic compounds into the population dynamics ofDaphnia magna : A combination of the DEBtox and matrix population models. Ecological Modelling , 203, 204–214. Bond, M.L., Lee, D.E. & Paniw, M. (2023). Extinction risks and mitigation for a megaherbivore, the giraffe, in a human-influenced landscape under climate change. Global Change Biology , 29, 6693–6712. Boyce, M.S. (1992). Population viability analysis. Annual Review of Ecology and Systematics , 23, 481–506. Brandell, E.E., Dobson, A.P., Hudson, P.J., Cross, P.C. & Smith, D.W. (2021). A metapopulation model of social group dynamics and disease applied to Yellowstone wolves. Proceedings of the National Academy of Sciences , 118, e2020023118. Bret, V., Capra, H., Gouraud, V., Lamouroux, N., Piffady, J., Tissot, L., et al. (2017). Understanding inter-reach variation in brown trout (Salmo trutta ) mortality rates using a hierarchical Bayesian state-space model. Canadian Journal of Fisheries and Aquatic Sciences , 74, 1612–1627. ten Brink, H., Onstein, R.E. & de Roos, A.M. (2020). Habitat deterioration promotes the evolution of direct development in metamorphosing species. Evolution , 74, 1826–1850. Briscoe, N.J., Elith, J., Salguero-Gómez, R., Lahoz-Monfort, J.J., Camac, J.S., Giljohann, K.M., et al. (2019). Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecology Letters , 22, 1940–1956. Bro-Jørgensen, J., Franks, D.W. & Meise, K. (2019). Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation. Philosophical Transactions of the Royal Society B: Biological Sciences , 374, 20190008. Buckland, S.T., Newman, K.B., Thomas, L. & Koesters, N.B. (2004). State-space models for the dynamics of wild animal populations.Ecological Modelling , 171, 157–175. Buckley, Y.M. & Han, Y. (2014). Managing the side effects of invasion control. Science , 344, 975–976. Cariboni, J., Gatelli, D., Liska, R. & Saltelli, A. (2007). The role of sensitivity analysis in ecological modelling. Ecological Modelling , Special Issue on Ecological Informatics: Biologically-Inspired Machine Learning, 203, 167–182. Caswell, H. (2000). Prospective and retrospective perturbation analyses: Their roles in conservation biology. Ecology , 81, 619–627. Caswell, H. (2001). Matrix population models . Sinauer Associates. Caughley, G. (1994). Directions in Conservation Biology. The Journal of Animal Ecology , 63, 215. Chappell, M.A., Szafrańska, P.A., Zub, K. & Konarzewski, M. (2013). The energy cost of voluntary running in the weasel Mustela nivalis .Journal of Experimental Biology , 216, 578–586. Charbonnel, N., Chaval, Y., Berthier, K., Deter, J., Morand, S., Palme, R., et al. (2008). Stress and demographic decline: A potential effect mediated by impairment of reproduction and immune function in cyclic vole populations. Physiological and Biochemical Zoology , 81, 63–73. Chase, J.M., Jeliazkov, A., Ladouceur, E. & Viana, D.S. (2020). Biodiversity conservation through the lens of metacommunity ecology.Annals of the New York Academy of Sciences , 1469, 86–104. Chevy, E.T., Min, J., Caudill, V., Champer, S.E., Haller, B.C., Rehmann, C.T., et al. (2025). Population genetics meets ecology: a guide to individual-based simulations in continuous landscapes. Chhaytle, M., Ouvrard, R., Poinot, T. & Mouysset, L. (2023). Parameter-varying partial differential equation to model the global change impacts on wildlife populations. Ecological Modelling , 486, 110516. Curveira-Santos, G., Marion, S., Sutherland, C., Beirne, C., Herdman, E.J., Tattersall, E.R., et al. (2024). Disturbance-mediated changes to boreal mammal spatial networks in industrializing landscapes.Ecological Applications , 34, e3004. Daversa, D.R., Lloyd-Smith, J.O., Bucciarelli, G.M., Shaffer, H.B. & Blumstein, D.T. (2025). Non-lethal effects of climate change and infectious disease: An energetics approach to understanding population impacts. Functional Ecology . Davidson, A.D., Hamilton, M.J., Boyer, A.G., Brown, J.H. & Ceballos, G. (2009). Multiple ecological pathways to extinction in mammals.Proceedings of the National Academy of Sciences , 106, 10702–10705. DeAngelis, D.L. & Grimm, V. (2014). Individual-based models in ecology after four decades. F1000Prime Reports , 6. Denny, M. (2017). The fallacy of the average: on the ubiquity, utility and continuing novelty of Jensen’s inequality. Journal of Experimental Biology , 220, 139–146. Desforges, J.-P.W., Sonne, C. & Dietz, R. (2017). Using energy budgets to combine ecology and toxicology in a mammalian sentinel species.Scientific Reports , 7, 46267. Direction Régionale de l’Environnement, de l’Aménagement et du Logement (DREAL), Groupe de Recherche et d’Investigation sur la Faune Sauvage (GRIFS), Cistude Nature & Office Français de la Biodiversité (OFB). (2021). 2021-2031 National Plan National d’Actions forthe European mink (Mustela lutreola) . Dobson, A.D.M., de Lange, E., Keane, A., Ibbett, H. & Milner-Gulland, E.J. (2019). Integrating models of human behaviour between the individual and population levels to inform conservation interventions.Philosophical Transactions of the Royal Society B: Biological Sciences , 374, 20180053. Dugger, K.M., Anthony, R.G. & Andrews, L.S. (2011). Transient dynamics of invasive competition: Barred Owls, Spotted Owls, habitat, and the demons of competition present. Ecological Applications , 21, 2459–2468. Elith, J. & Leathwick, J.R. (2009). Species distribution models: Ecological explanation and prediction across space and time.Annual Review of Ecology, Evolution, and Systematics , 40, 677–697. Ellner, S.P. & Rees, M. (2006). Integral projection models for species with complex demography. The American Naturalist , 167, 410–428. Engelen, A., Davis, K., Ellis, A.G. & Salguero-Gómez, R. (2025). Poaching exacerbates the effects of climate change on the long-term viability of an endemic South African succulent plant species. Evans, T.G., Diamond, S.E. & Kelly, M.W. (2015). Mechanistic species distribution modelling as a link between physiology and conservation.Conservation Physiology , 3, cov056. Fardell, L.L., Nano, C.E.M., Pavey, C.R. & Dickman, C.R. (2021). Small prey animal habitat use in landscapes of fear: Effects of predator presence and human activity along an urban disturbance gradient.Frontiers in Ecology and Evolution , 9. Fieberg, J. & Ellner, S.P. (2001). Stochastic matrix models for conservation and management: A comparative review of methods.Ecology Letters , 4, 244–266. Fletcher Jr., R.J., Hefley, T.J., Robertson, E.P., Zuckerberg, B., McCleery, R.A. & Dorazio, R.M. (2019). A practical guide for combining data to model species distributions. Ecology , 100, e02710. Fryxell, J.M., Avgar, T., Liu, B., Baker, J.A., Rodgers, A.R., Shuter, J., et al. (2020). Anthropogenic disturbance and population viability of woodland caribou in Ontario. The Journal of Wildlife Management , 84, 636–650. Fulton, E.A. (2010). Approaches to end-to-end ecosystem models.Journal of Marine Systems , 81, 171–183. Galic, N., Sullivan, L.L., Grimm, V. & Forbes, V.E. (2018). When things don’t add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecology Letters , 21, 568–577. Gamelon, M., Jenouvrier, S., Lindner, M., Sæther, B.-E. & Visser, M.E. (2023). Detecting climate signals cascading through levels of biological organization. Nature Climate Change , 13, 985–989. Geary, W.L., Bode, M., Doherty, T.S., Fulton, E.A., Nimmo, D.G., Tulloch, A.I.T., et al. (2020). A guide to ecosystem models and their environmental applications. Nature Ecology & Evolution , 4, 1459–1471. Gerber, L.R. (2006). Including behavioral data in demographic models improves estimates of population viability. Frontiers in Ecology and the Environment , 4, 419–427. Getz, W.M. & Haight, R.G. (1989). Population harvesting: demographic models of fish, forest, and animal resources . Princeton University Press. Goel, N., Guttal, V., Levin, S.A. & Staver, A.C. (2020). Dispersal Increases the Resilience of Tropical Savanna and Forest Distributions.The American Naturalist , 195, 833–850. Goicolea, T., Lewison, R.L., Mateo-Sánchez, M.C. & Jennings, M.K. (2023). Dynamic connectivity analyses to inform management of the invasive American mink and its native competitor, the European mink.Biological Invasions , 25, 3583–3601. Gomez, A. (2018). Cuatro años del proyecto LIFE Lutreola Spain . Available at: http://lifelutreolaspain.com/en/life-lutreola-spain-project/the-project.html. Last accessed 20 January 2025. Gosselin, J., Zedrosser, A., Swenson, J.E. & Pelletier, F. (2015). The relative importance of direct and indirect effects of hunting mortality on the population dynamics of brown bears. Proceedings of the Royal Society B: Biological Sciences , 282, 20141840. Grente, O., Bauduin, S., Santostasi, N.L., Chamaillé-Jammes, S., Duchamp, C., Drouet-Hoguet, N., et al. (2024). Evaluating the effects of wolf culling on livestock predation when considering wolf population dynamics in an individual-based model. Wildlife Biology , e01227. Guisan, A., Thuiller, W. & Zimmermann, N.E. (2017). Habitat suitability and distribution models: with applications in R . Cambridge University Press. Hall, A.J., McConnell, B.J., Schwacke, L.H., Ylitalo, G.M., Williams, R. & Rowles, T.K. (2018). Predicting the effects of polychlorinated biphenyls on cetacean populations through impacts on immunity and calf survival. Environmental Pollution , 233, 407–418. Hao, T., Elith, J., Lahoz-Monfort, J.J. & Guillera-Arroita, G. (2020). Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography , 43, 549–558. Harris, S. & Rayner, J.M.V. (1986). Urban fox (Vulpes vulpes ) population estimates and habitat requirements in several British cities.Journal of Animal Ecology , 55, 575–591. Harwood, J., Booth, C., Sinclair, R. & Hague, E. (2020). Developing marine mammal dynamic energy budget models and their potential for integration into the iPCoD framework. Scottish Marine and Freshwater Science , 11, 12328–1. Hendry, A.P., Farrugia, T.J. & Kinnison, M.T. (2008). Human influences on rates of phenotypic change in wild animal populations.Molecular Ecology , 17, 20–29. Hin, V., Harwood, J. & de Roos, A.M. (2019). Bio-energetic modeling of medium-sized cetaceans shows high sensitivity to disturbance in seasons of low resource supply. Ecological Applications , 29, e01903. Hoffmann, M. & Sillero-Zubiri, C. (2021). Vulpes vulpes (amended version of 2016 assessment) ( No. e. T23062A193903628). The IUCN Red List of Threatened Species 2021. Holdo, R.M., Fryxell, J.M., Sinclair, A.R.E., Dobson, A. & Holt, R.D. (2011). Predicted impact of barriers to migration on the Serengeti wildebeest population. PLoS ONE , 6, e16370. Houston, A., Clark, C., McNamara, J. & Mangel, M. (1988). Dynamic models in behavioural and evolutionary ecology. Nature , 332, 29–34. Hradsky, B.A., Kelly, L.T., Robley, A. & Wintle, B.A. (2019). FoxNet: An individual-based model framework to support management of an invasive predator, the red fox. Journal of Applied Ecology , 56, 1460–1470. Hunter-Ayad, J., Ohlemüller, R., Recio, M.R. & Seddon, P.J. (2020). Reintroduction modelling: A guide to choosing and combining models for species reintroductions. Journal of Applied Ecology , 57, 1233–1243. IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services . Zenodo. IPBES. (2022). Summary for policymakers of the thematic assessment of the sustainable use of wild species of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) . Zenodo. Iversen, J.A. (1972). Basal energy metabolism of mustelids.Journal of comparative physiology , 81, 341–344. Jeltsch, F., Müller, M.S., Grimm, V., Wissel, C. & Brandl, R. (1997). Pattern formation triggered by rare events: lessons from the spread of rabies. Proceedings of the Royal Society of London. Series B: Biological Sciences , 264, 495–503. Johnson, D.L., Eisaguirre, J.M., Taylor, R.L. & Garlich-Miller, J.L. (2024). Assessing the population consequences of disturbance and climate change for the Pacific walrus. Marine Ecology Progress Series , 740, 193–211. Johnston, A.S.A., Boyd, R.J., Watson, J.W., Paul, A., Evans, L.C., Gardner, E.L., et al. (2019). Predicting population responses to environmental change from individual-level mechanisms: towards a standardized mechanistic approach. Proceedings of the Royal Society B: Biological Sciences , 286, 20191916. Jordt, A.M., Lange, M., Kramer-Schadt, S., Nielsen, L.H., Nielsen, S.S., Thulke, H.-H., et al. (2016). Spatio-temporal modeling of the invasive potential of wild boar—a conflict-prone species—using multi-source citizen science data. Preventive Veterinary Medicine , 124, 34–44. Karban, R. & De Valpine, P. (2010). Population dynamics of an Arctiid caterpillar–tachinid parasitoid system using state-space models.Journal of Animal Ecology , 79, 650–661. Kays, R., Parsons, A.W., Baker, M.C., Kalies, E.L., Forrester, T., Costello, R., et al. (2017). Does hunting or hiking affect wildlife communities in protected areas? Journal of Applied Ecology , 54, 242–252. Kelleher, S., Guillera-Arroita, G., Elith, J. & Briscoe, N. (2024). Twenty years of dynamic occupancy models: a review of applications and look to the future. Kiik, K., Maran, T., Nemvalts, K., Sandre, S.-L. & Tammaru, T. (2017). Reproductive parameters of critically endangered European mink (Mustela lutreola ) in captivity. Animal Reproduction Science , 181, 86–92. Klanjscek, T., Caswell, H., Neubert, M.G. & Nisbet, R.M. (2006). Integrating dynamic energy budgets into matrix population models.Ecological Modelling , 196, 407–420. Kooijman, S.A.L.M. (2000). Dynamic energy and mass budgets in biological systems . Cambridge University Press. Kooijman, S.A.L.M. (2010). Dynamic energy budget theory for metabolic organisation . Cambridge University Press. Kooijman, S.A.L.M. & Augustine, S. (2022). The comparative energetics of the carnivorans and pangolins. Conservation Physiology , 10, coac052. Lande, R. (1993). Risks of population extinction from demographic and environmental stochasticity and random catastrophes. The American Naturalist , 142, 911–927. Laplanche, C., Elger, A., Santoul, F., Thiede, G.P. & Budy, P. (2018). Modeling the fish community population dynamics and forecasting the eradication success of an exotic fish from an alpine stream.Biological Conservation , 223, 34–46. Larson, C.L., Reed, S.E., Merenlender, A.M. & Crooks, K.R. (2016). Effects of Recreation on Animals Revealed as Widespread through a Global Systematic Review. PLoS ONE , 11, e0167259. Lebreton, J.-D. & Gimenez, O. (2013). Detecting and estimating density dependence in wildlife populations. The Journal of Wildlife Management , 77, 12–23. Lerch, B.A., Rudrapatna, A., Rabi, N., Wickman, J., Koffel, T. & Klausmeier, C.A. (2023). Connecting local and regional scales with stochastic metacommunity models: Competition, ecological drift, and dispersal. Ecological Monographs , 93, e1591. Levins, R. (1966). The strategy of model building in population biology.American scientist , 54, 421–431. Libois, R. (2001). Etude préliminaire du régime alimentaire du Vison d’Europe (Mustela lutreola) dans le Sud-Ouest de la France – Rapport préliminaire de la seconde phrase . Groupe Vison d’Europe – Plan de restauration Vison d’Europe. Lieury, N., Ruette, S., Devillard, S., Albaret, M., Drouyer, F., Baudoux, B., et al. (2015). Compensatory immigration challenges predator control: An experimental evidence-based approach improves management. The Journal of Wildlife Management , 79, 425–434. Lika, K., Kearney, M.R., Freitas, V., van der Veer, H.W., van der Meer, J., Wijsman, J.W.M., et al. (2011). The “covariation method” for estimating the parameters of the standard Dynamic Energy Budget model I: Philosophy and approach. Journal of Sea Research , 66, 270–277. Loeuille, N. (2019). Eco-evolutionary dynamics in a disturbed world: implications for the maintenance of ecological networks. Lusardi, L., André, E., Castañeda, I., Lemler, S., Lafitte, P., Zarzoso-Lacoste, D., et al. (2024). Methods for comparing theoretical models parameterized with field data using biological criteria and Sobol analysis. Ecological Modelling , 493, 110728. Lytle, D.A. & Tonkin, J.D. (2023). Matrix community models for ecology and evolution. npj Biodiversity , 2, 1–9. Macdonald, D. (1981). Resource dispersion and the social organization of the red fox (Vulpes vulpes ). Presented at the Worldwide Furbearer Conference Proceedings, 1981, University of Maryland Press, pp. 918–949. Mahevas, S. & Sigrid, L. (2024). Modelling marine ecosystems and choosing a management scenario that takes uncertainty into account - the MIMI experiment. SEANOE . Mañas, S., Gómez, A., Asensio, V., Palazón, S., Pǒdra, M., Casal, J.,et al. (2016). Demographic structure of three riparian mustelid species in Spain. European Journal of Wildlife Research , 62, 119–129. Mangel, M. & Clark, C.W. (1988). Dynamic Modeling in Behavioral Ecology . Princeton University Press. Maran, T., Põdra, M., Harrington, L.A. & Macdonald, D.W. (2017). European mink: restoration attempts for a species on the brink of extinction. In: Biology and Conservation of Musteloids . Oxford University Press, pp. 370–388. Maran, T., Skumatov, D., Gomez, A., Põdra, M., Abramov, A.V. & Dinets, V. (2016). Mustela lutreola ( No. e. T14018A45199861). The IUCN Red List of Threatened Species 2016. Martin, B.T., Zimmer, E.I., Grimm, V. & Jager, T. (2012). Dynamic Energy Budget theory meets individual-based modelling: a generic and accessible implementation. Methods in Ecology and Evolution , 3, 445–449. Mathewson, P.D., Moyer-Horner, L., Beever, E.A., Briscoe, N.J., Kearney, M., Yahn, J.M., et al. (2017). Mechanistic variables can enhance predictive models of endotherm distributions: The American pika under current, past, and future climates. Global Change Biology , 23, 1048–1064. McCaffery, R., Solonen, A. & Crone, E. (2012). Frog population viability under present and future climate conditions: a Bayesian state-space approach. Journal of Animal Ecology , 81, 978–985. McGrosky, A. & Pontzer, H. (2023). The fire of evolution: energy expenditure and ecology in primates and other endotherms. Journal of Experimental Biology , 226, jeb245272. McHuron, E.A., Aerts, L., Gailey, G., Sychenko, O., Costa, D.P., Mangel, M., et al. (2021). Predicting the population consequences of acoustic disturbance, with application to an endangered gray whale population. Ecological Applications , 31, e02440. van der Meer, J. (2006). Metabolic theories in ecology. Trends in Ecology & Evolution , 21, 136–140. Meia, J. (1994). Social organisation of a red fox (Vulpes vulpes ) population in a mountainous habitat. Merow, C., Dahlgren, J.P., Metcalf, C.J.E., Childs, D.Z., Evans, M.E.K., Jongejans, E., et al. (2014). Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution , 5, 99–110. Metcalf, C.J.E., Rose, K.E., Childs, D.Z., Sheppard, A.W., Grubb, P.J. & Rees, M. (2008). Evolution of flowering decisions in a stochastic, density-dependent environment. Proceedings of the National Academy of Sciences , 105, 10466–10470. Metz, J.A.J. & Diekmann, O. (Eds.). (1986). The Dynamics of Physiologically Structured Populations . Lecture Notes in Biomathematics. Springer. Millsap, B.A., Zimmerman, G.S., Kendall, W.L., Barnes, J.G., Braham, M.A., Bedrosian, B.E., et al. (2022). Age-specific survival rates, causes of death, and allowable take of golden eagles in the western United States. Ecological Applications , 32, e2544. Molnár, P.K., Derocher, A.E., Thiemann, G.W. & Lewis, M.A. (2010). Predicting survival, reproduction and abundance of polar bears under climate change. Biological Conservation , Conservation planning within emerging global climate and economic realities, 143, 1612–1622. Moorcroft, P.R. & Lewis, M.A. (2006). Mechanistic Home Range Analysis . Princeton University Press. Morris, W.F. & Doak, D.F. (2002). Quantitative conservation biology: theory and practice of population viability analysis . Sinauer Associates. Nater, C.R., Hofhuis, S.P., Grainger, M., Flagstad, Ø., Ims, R.A., Killengreen, S.T., et al. (2024). An integrated population modelling workflow for supporting mesopredator management. National Academies of Sciences, Engineering, and Medicine. (2017).Approaches to understanding the cumulative effects of stressors on marine mammals . The National Academies Press, Washington, DC. Nichols, J.D. (2021). Adaptive management: making recurrent decisions in the face of uncertainty. In: Demographic Methods across the Tree of Life . Oxford University Press, pp. 313–328. Oppel, S., Clark, B.L., Risi, M.M., Horswill, C., Converse, S.J., Jones, C.W., et al. (2022). Cryptic population decrease due to invasive species predation in a long-lived seabird supports need for eradication.Journal of Applied Ecology , 59, 2059–2070. Otto, S.P. & Day, T. (2011). A biologist’s guide to mathematical modeling in ecology and evolution . Princeton University Press. Ovaskainen, O. & Hanski, I. (2001). Spatially structured metapopulation models: global and local assessment of metapopulation capacity.Theoretical Population Biology , 60, 281–302. Palazón, S., Ruiz-Olmo, J. & Gosàlbez, J. (2004). Diet of European mink (Mustela lutreola ) in Northern Spain. Mammalia , 68, 159–165. Palstra, F.P. & Ruzzante, D.E. (2008). Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence?Molecular Ecology , 17, 3428–3447. Paniw, M., James, T.D., Ruth Archer, C., Römer, G., Levin, S., Compagnoni, A., et al. (2021). The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis. Journal of Animal Ecology , 90, 1398–1407. Parker, K.L., Barboza, P.S. & Gillingham, M.P. (2009). Nutrition integrates environmental responses of ungulates. Functional Ecology , 23, 57–69. Penman, T.D., Keith, D.A., Elith, J., Mahony, M.J., Tingley, R., Baumgartner, J.B., et al. (2015). Interactive effects of climate change and fire on metapopulation viability of a forest-dependent frog in south-eastern Australia. Biological Conservation , 190, 142–153. Péron, G. & Koons, D.N. (2012). Integrated modeling of communities: parasitism, competition, and demographic synchrony in sympatric ducks.Ecology , 93, 2456–2464. Pichler, M. & Hartig, F. (2023). Machine learning and deep learning—A review for ecologists. Methods in Ecology and Evolution , 14, 994–1016. Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., et al. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science , 344, 1246752. Pirotta, E., Mangel, M., Costa, D.P., Goldbogen, J., Harwood, J., Hin, V., et al. (2019). Anthropogenic disturbance in a changing environment: modelling lifetime reproductive success to predict the consequences of multiple stressors on a migratory population.Oikos , 128, 1340–1357. Plard, F., Turek, D., Grüebler, M.U. & Schaub, M. (2019). IPM2: toward better understanding and forecasting of population dynamics.Ecological Monographs , 89, e01364. Põdra, M. (2021). Expansion of alien American mink, Neovison vison , and translocation of captive-bred European mink, Mustela lutreola : Assessing impact on the native species conservation. School of Natural Science and Health, Tallinna Ülikool, Estonia. Pratzer, M., Nill, L., Kuemmerle, T., Zurell, D. & Fandos, G. (2023). Large carnivore range expansion in Iberia in relation to different scenarios of permeability of human-dominated landscapes. Diversity and Distributions , 29, 75–88. Quéroué, M., Barbraud, C., Barraquand, F., Turek, D., Delord, K., Pacoureau, N., et al. (2021). Multispecies integrated population model reveals bottom-up dynamics in a seabird predator–prey system.Ecological Monographs , 91, e01459. Radchuk, V., Johst, K., Groeneveld, J., Grimm, V. & Schtickzelle, N. (2013). Behind the scenes of population viability modeling: Predicting butterfly metapopulation dynamics under climate change. Ecological Modelling , 259, 62–73. Rademaker, M., van Leeuwen, A. & Smallegange, I.M. (2024). Why we cannot always expect life history strategies to directly inform on sensitivity to environmental change. Journal of Animal Ecology , 93, 348–366. Refsgaard, J.C., van der Sluijs, J.P., Brown, J. & van der Keur, P. (2006). A framework for dealing with uncertainty due to model structure error. Advances in Water Resources , 29, 1586–1597. Reimer, J.R., Mangel, M., Derocher, A.E. & Lewis, M.A. (2019). Modeling optimal responses and fitness consequences in a changing Arctic.Global Change Biology , 25, 3450–3461. Rezaei, S., Mohammadi, A., Bencini, R., Rooney, T. & Naderi, M. (2022). Identifying connectivity for two sympatric carnivores in human-dominated landscapes in central Iran. PLoS ONE , 17, e0269179. Roemer, G.W., Donlan, C.J. & Courchamp, F. (2002). Golden eagles, feral pigs, and insular carnivores: How exotic species turn native predators into prey. Proceedings of the National Academy of Sciences , 99, 791–796. Rogers, L.A., Storvik, G.O., Knutsen, H., Olsen, E.M. & Stenseth, N.C. (2017). Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models. Journal of Animal Ecology , 86, 888–898. de Roos, A.M. (1997). A gentle introduction to physiologically structured population models. In: Structured-population models in marine, terrestrial, and freshwater systems . Springer, pp. 119–204. de Roos, A.M. (2021). PSPManalysis: Steady-state and bifurcation analysis of physiologically structured population models. Methods in Ecology and Evolution , 12, 383–390. de Roos, A.M. & Persson, L. (2013). Population and Community Ecology of Ontogenetic Development . Princeton University Press. de Roos, A.M., Schellekens, T., Van Kooten, T., Van De Wolfshaar, K., Claessen, D. & Persson, L. (2008). Simplifying a physiologically structured population model to a stage-structured biomass model.Theoretical population biology , 73, 47–62. Rounsevell, M.D.A., Arneth, A., Brown, C., Cheung, W.W.L., Gimenez, O., Holman, I., et al. (2021). Identifying uncertainties in scenarios and models of socio-ecological systems in support of decision-making.One Earth , 4, 967–985. Russo, L.F., Fernández-González, Á., Penteriani, V., del Mar Delgado, M., Palazón, S., Loy, A., et al. (2023). The different fate of the Pyrenean desman (Galemys pyrenaicus ) and the Eurasian otter (Lutra lutra ) under climate and land use changes. Animals , 13, 274. Santika, T., McAlpine, C.A., Lunney, D., Wilson, K.A. & Rhodes, J.R. (2014). Modelling species distributional shifts across broad spatial extents by linking dynamic occupancy models with public-based surveys.Diversity and Distributions , 20, 786–796. Schaub, M. & Abadi, F. (2011). Integrated population models: a novel analysis framework for deeper insights into population dynamics.Journal of Ornithology , 152, 227–237. Schmolke, A., Thorbek, P., DeAngelis, D.L. & Grimm, V. (2010). Ecological models supporting environmental decision making: a strategy for the future. Trends in Ecology & Evolution , 25, 479–486. Schweiger, E.W., Grace, J.B., Cooper, D., Bobowski, B. & Britten, M. (2016). Using structural equation modeling to link human activities to wetland ecological integrity. Ecosphere , 7, e01548. Schwensow, N.I., Heni, A.C., Schmid, J., Montero, B.K., Brändel, S.D., Halczok, T.K., et al. (2022). Disentangling direct from indirect effects of habitat disturbance on multiple components of biodiversity.Journal of Animal Ecology , 91, 2220–2234. Silva, W.T.A.F., Harding, K.C., Marques, G.M., Bäcklin, B.M., Sonne, C., Dietz, R., et al. (2020). Life cycle bioenergetics of the gray seal (Halichoerus grypus ) in the Baltic Sea: Population response to environmental stress. Environment International , 145, 106145. Simmonds, E.G., Adjei, K.P., Cretois, B., Dickel, L., González-Gil, R., Laverick, J.H., et al. (2024). Recommendations for quantitative uncertainty consideration in ecology and evolution. Trends in Ecology & Evolution , 39, 328–337. Simon, R.N. & Fortin, D. (2019). Linking habitat use to mortality and population viability to disarm an ecological trap. Biological Conservation , 236, 366–374. Skogen, M.D., Aarflot, J.M., García-García, L.M., Ji, R., Ruiz-Villarreal, M., Almroth-Rosell, E., et al. (2024). Bridging the gap: integrating models and observations for better ecosystem understanding. Marine Ecology Progress Series , 739, 257–268. Smallegange, I.M., Caswell, H., Toorians, M.E. & de Roos, A.M. (2017). Mechanistic description of population dynamics using dynamic energy budget theory incorporated into integral projection models.Methods in Ecology and Evolution , 8, 146–154. Smallegange, I.M., Flotats Avilés, M. & Eustache, K. (2020). Unusually paced life history strategies of marine megafauna drive atypical sensitivities to environmental variability. Frontiers in Marine Science , 7. Smith, J.A., Duane, T.P. & Wilmers, C.C. (2019). Moving through the matrix: Promoting permeability for large carnivores in a human-dominated landscape. Landscape and Urban Planning , 183, 50–58. Soudijn, F.H., van Kooten, T., Slabbekoorn, H. & de Roos, A.M. (2020). Population-level effects of acoustic disturbance in Atlantic cod: a size-structured analysis based on energy budgets. Proceedings of the Royal Society B: Biological Sciences , 287, 20200490. Souto-Veiga, R., Groeneveld, J., Enright, N.J., Fontaine, J.B. & Jeltsch, F. (2024). Climate change may shift metapopulations towards unstable source-sink dynamics in a fire-killed, serotinous shrub.Ecology and Evolution , 14, e11488. Szangolies, L., Gallagher, C.A. & Jeltsch, F. (2024). Individual energetics scale up to community coexistence: Movement, metabolism and biodiversity dynamics in fragmented landscapes. Journal of Animal Ecology , 93, 1065–1077. Takashina, N. (2016). Simple rules for establishment of effective marine protected areas in an age-structured metapopulation. Journal of Theoretical Biology , 391, 88–94. Tédonzong, L.R.D., Willie, J., Makengveu, S.T., Lens, L. & Tagg, N. (2020). Variation in behavioral traits of two frugivorous mammals may lead to differential responses to human disturbance. Ecology and Evolution , 10, 3798–3813. Thompson, B.K., Olden, J.D. & Converse, S.J. (2021). Mechanistic invasive species management models and their application in conservation. Conservation Science and Practice , 3, e533. Thunell, V., Gårdmark, A., Huss, M. & Vindenes, Y. (2023). Optimal energy allocation trade-off driven by size-dependent physiological and demographic responses to warming. Ecology , 104, e3967. Tischendorf, L., Thulke, H.-H., Staubach, C., Müller, M.S., Jeltsch, F., Goretzki, J., et al. (1998). Chance and risk of controlling rabies in large–scale and long–term immunized fox populations.Proceedings of the Royal Society of London. Series B: Biological Sciences , 265, 839–846. Tonini, F., Hochmair, H.H., Scheffrahn, R.H. & DeAngelis, D.L. (2014). Stochastic spread models: A comparison between an individual-based and a lattice-based model for assessing the expansion of invasive termites over a landscape. Ecological Informatics , 24, 222–230. Tucker, A.M., McGowan, C.P., Mulero Oliveras, E.S., Angeli, N.F. & Zegarra, J.P. (2021). A demographic projection model to support conservation decision making for an endangered snake with limited monitoring data. Animal Conservation , 24, 291–301. Urban, M.C., Bocedi, G., Hendry, A.P., Mihoub, J.-B., Pe’er, G., Singer, A., et al. (2016). Improving the forecast for biodiversity under climate change. Science , 353, aad8466. Urban, M.C., Travis, J.M.J., Zurell, D., Thompson, P.L., Synes, N.W., Scarpa, A., et al. (2022). Coding for life: Designing a platform for projecting and protecting global biodiversity. BioScience , 72, 91–104. Uribe‐Rivera, D.E., Guillera‐Arroita, G., Windecker, S.M., Pliscoff, P. & Wintle, B.A. (2023). The predictive performance of process‐explicit range change models remains largely untested. Ecography , 2023, e06048. Varriale, M. & Gomes, A. (1998). A study of a three species food chain.Ecological Modelling , 110, 119–133. Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones, K.R., et al. (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications , 7, 12558. Voinov, A. & Bousquet, F. (2010). Modelling with stakeholders.Environmental Modelling & Software , Thematic Issue - Modelling with Stakeholders, 25, 1268–1281. Wallace, K., Leslie, A. & Coulson, T. (2013). Re-evaluating the effect of harvesting regimes on Nile crocodiles using an integral projection model. Journal of Animal Ecology , 82, 155–165. Wamberg, S. & Tauson, A.-H. (1998). Daily milk intake and body water turnover in suckling mink (Mustela vison ) kits. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology , 119, 931–939. Westcott, D.A., Caley, P., Heersink, D.K. & McKeown, A. (2018). A state-space modelling approach to wildlife monitoring with application to flying-fox abundance. Scientific Reports , 8, 4038. White, J.W., Nickols, K.J., Malone, D., Carr, M.H., Starr, R.M., Cordoleani, F., et al. (2016). Fitting state-space integral projection models to size-structured time series data to estimate unknown parameters. Ecological Applications , 26, 2677–2694. Zavaleta, E.S., Hobbs, R.J. & Mooney, H.A. (2001). Viewing invasive species removal in a whole-ecosystem context. Trends in Ecology & Evolution , 16, 454–459. Zhang, B., DeAngelis, D.L. & Ni, W.-M. (2021). Carrying capacity of spatially distributed metapopulations. Trends in Ecology & Evolution , 36, 164–173. Zhao, Q., Arnold, T.W., Devries, J.H., Howerter, D.W., Clark, R.G. & Weegman, M.D. (2019). Land-use change increases climatic vulnerability of migratory birds: Insights from integrated population modelling.Journal of Animal Ecology , 88, 1625–1637. Zipkin, E.F., Inouye, B.D. & Beissinger, S.R. (2019). Innovations in data integration for modeling populations. Ecology , 100, 1–3.