Cited literature
Accolla, C., Vaugeois, M., Grimm, V., Moore, A.P., Rueda-Cediel, P.,
Schmolke, A., et al. (2021). A review of key features and their
implementation in unstructured, structured, and agent-based population
models for ecological risk assessment. Integrated Environmental
Assessment and Management , 17, 521–540.
Amstrup, S.C., Marcot, B.G. & Douglas, D.C. (2008). A Bayesian network
modeling approach to forecasting the 21st century worldwide status of
polar bears. In: Arctic sea ice decline: Observations,
projections, mechanisms, and implications . American Geophysical Union,
pp. 213–268.
Andersen, D., Yi, Y., Borzée, A., Kim, K., Moon, K.-S., Kim, J.-J.,et al. (2022). Use of a spatially explicit individual-based model
to predict population trajectories and habitat connectivity for a
reintroduced ursid. Oryx , 56, 298–307.
Auger-Méthé, M., Newman, K., Cole, D., Empacher, F., Gryba, R., King,
A.A., et al. (2021). A guide to state–space modeling of
ecological time series. Ecological Monographs , 91, e01470.
Baker, L., Matthiopoulos, J., Müller, T., Freuling, C. & Hampson, K.
(2020). Local rabies transmission and regional spatial coupling in
European foxes. PLoS ONE , 15, e0220592.
Banks, J.E., Laubmeier, A.N. & Banks, H.T. (2020). Modelling the
effects of field spatial scale and natural enemy colonization behaviour
on pest suppression in diversified agroecosystems. Agricultural
and Forest Entomology , 22, 30–40.
Bastos, R., Pinhanços, A., Santos, M., Fernandes, R.F., Vicente, J.R.,
Morinha, F., et al. (2016). Evaluating the regional cumulative
impact of wind farms on birds: how can spatially explicit dynamic
modelling improve impact assessments and monitoring? Journal of
Applied Ecology , 53, 1330–1340.
Baudrot, V., Fernandez-de-Simon, J., Coeurdassier, M., Couval, G.,
Giraudoux, P. & Lambin, X. (2020). Trophic transfer of pesticides: The
fine line between predator–prey regulation and pesticide–pest
regulation. Journal of Applied Ecology , 57, 806–818.
Beissinger, S.R. & Westphal, M.I. (1998). On the use of demographic
models of population viability in endangered species management.The Journal of wildlife management , 821–841.
Berger, A., Barthel, L.M., Rast, W., Hofer, H. & Gras, P. (2020). Urban
hedgehog behavioural responses to temporary habitat disturbance versus
permanent fragmentation. Animals , 10, 2109.
Billoir, E., Péry, A.R.R. & Charles, S. (2007). Integrating the lethal
and sublethal effects of toxic compounds into the population dynamics ofDaphnia magna : A combination of the DEBtox and matrix population
models. Ecological Modelling , 203, 204–214.
Bond, M.L., Lee, D.E. & Paniw, M. (2023). Extinction risks and
mitigation for a megaherbivore, the giraffe, in a human-influenced
landscape under climate change. Global Change Biology , 29,
6693–6712.
Boyce, M.S. (1992). Population viability analysis. Annual Review
of Ecology and Systematics , 23, 481–506.
Brandell, E.E., Dobson, A.P., Hudson, P.J., Cross, P.C. & Smith, D.W.
(2021). A metapopulation model of social group dynamics and disease
applied to Yellowstone wolves. Proceedings of the National Academy
of Sciences , 118, e2020023118.
Bret, V., Capra, H., Gouraud, V., Lamouroux, N., Piffady, J., Tissot,
L., et al. (2017). Understanding inter-reach variation in brown
trout (Salmo trutta ) mortality rates using a hierarchical
Bayesian state-space model. Canadian Journal of Fisheries and
Aquatic Sciences , 74, 1612–1627.
ten Brink, H., Onstein, R.E. & de Roos, A.M. (2020). Habitat
deterioration promotes the evolution of direct development in
metamorphosing species. Evolution , 74, 1826–1850.
Briscoe, N.J., Elith, J., Salguero-Gómez, R., Lahoz-Monfort, J.J.,
Camac, J.S., Giljohann, K.M., et al. (2019). Forecasting species
range dynamics with process-explicit models: matching methods to
applications. Ecology Letters , 22, 1940–1956.
Bro-Jørgensen, J., Franks, D.W. & Meise, K. (2019). Linking behaviour
to dynamics of populations and communities: application of novel
approaches in behavioural ecology to conservation. Philosophical
Transactions of the Royal Society B: Biological Sciences , 374,
20190008.
Buckland, S.T., Newman, K.B., Thomas, L. & Koesters, N.B. (2004).
State-space models for the dynamics of wild animal populations.Ecological Modelling , 171, 157–175.
Buckley, Y.M. & Han, Y. (2014). Managing the side effects of invasion
control. Science , 344, 975–976.
Cariboni, J., Gatelli, D., Liska, R. & Saltelli, A. (2007). The role of
sensitivity analysis in ecological modelling. Ecological
Modelling , Special Issue on Ecological Informatics:
Biologically-Inspired Machine Learning, 203, 167–182.
Caswell, H. (2000). Prospective and retrospective perturbation analyses:
Their roles in conservation biology. Ecology , 81, 619–627.
Caswell, H. (2001). Matrix population models . Sinauer Associates.
Caughley, G. (1994). Directions in Conservation Biology. The
Journal of Animal Ecology , 63, 215.
Chappell, M.A., Szafrańska, P.A., Zub, K. & Konarzewski, M. (2013). The
energy cost of voluntary running in the weasel Mustela nivalis .Journal of Experimental Biology , 216, 578–586.
Charbonnel, N., Chaval, Y., Berthier, K., Deter, J., Morand, S., Palme,
R., et al. (2008). Stress and demographic decline: A potential
effect mediated by impairment of reproduction and immune function in
cyclic vole populations. Physiological and Biochemical Zoology ,
81, 63–73.
Chase, J.M., Jeliazkov, A., Ladouceur, E. & Viana, D.S. (2020).
Biodiversity conservation through the lens of metacommunity ecology.Annals of the New York Academy of Sciences , 1469, 86–104.
Chevy, E.T., Min, J., Caudill, V., Champer, S.E., Haller, B.C., Rehmann,
C.T., et al. (2025). Population genetics meets ecology: a guide
to individual-based simulations in continuous landscapes.
Chhaytle, M., Ouvrard, R., Poinot, T. & Mouysset, L. (2023).
Parameter-varying partial differential equation to model the global
change impacts on wildlife populations. Ecological Modelling ,
486, 110516.
Curveira-Santos, G., Marion, S., Sutherland, C., Beirne, C., Herdman,
E.J., Tattersall, E.R., et al. (2024). Disturbance-mediated
changes to boreal mammal spatial networks in industrializing landscapes.Ecological Applications , 34, e3004.
Daversa, D.R., Lloyd-Smith, J.O., Bucciarelli, G.M., Shaffer, H.B. &
Blumstein, D.T. (2025). Non-lethal effects of climate change and
infectious disease: An energetics approach to understanding population
impacts. Functional Ecology .
Davidson, A.D., Hamilton, M.J., Boyer, A.G., Brown, J.H. & Ceballos, G.
(2009). Multiple ecological pathways to extinction in mammals.Proceedings of the National Academy of Sciences , 106,
10702–10705.
DeAngelis, D.L. & Grimm, V. (2014). Individual-based models in ecology
after four decades. F1000Prime Reports , 6.
Denny, M. (2017). The fallacy of the average: on the ubiquity, utility
and continuing novelty of Jensen’s inequality. Journal of
Experimental Biology , 220, 139–146.
Desforges, J.-P.W., Sonne, C. & Dietz, R. (2017). Using energy budgets
to combine ecology and toxicology in a mammalian sentinel species.Scientific Reports , 7, 46267.
Direction Régionale de l’Environnement, de l’Aménagement et du Logement
(DREAL), Groupe de Recherche et d’Investigation sur la Faune Sauvage
(GRIFS), Cistude Nature & Office Français de la Biodiversité (OFB).
(2021). 2021-2031 National Plan National d’Actions forthe European
mink (Mustela lutreola) .
Dobson, A.D.M., de Lange, E., Keane, A., Ibbett, H. & Milner-Gulland,
E.J. (2019). Integrating models of human behaviour between the
individual and population levels to inform conservation interventions.Philosophical Transactions of the Royal Society B: Biological
Sciences , 374, 20180053.
Dugger, K.M., Anthony, R.G. & Andrews, L.S. (2011). Transient dynamics
of invasive competition: Barred Owls, Spotted Owls, habitat, and the
demons of competition present. Ecological Applications , 21,
2459–2468.
Elith, J. & Leathwick, J.R. (2009). Species distribution models:
Ecological explanation and prediction across space and time.Annual Review of Ecology, Evolution, and Systematics , 40,
677–697.
Ellner, S.P. & Rees, M. (2006). Integral projection models for species
with complex demography. The American Naturalist , 167, 410–428.
Engelen, A., Davis, K., Ellis, A.G. & Salguero-Gómez, R. (2025).
Poaching exacerbates the effects of climate change on the long-term
viability of an endemic South African succulent plant species.
Evans, T.G., Diamond, S.E. & Kelly, M.W. (2015). Mechanistic species
distribution modelling as a link between physiology and conservation.Conservation Physiology , 3, cov056.
Fardell, L.L., Nano, C.E.M., Pavey, C.R. & Dickman, C.R. (2021). Small
prey animal habitat use in landscapes of fear: Effects of predator
presence and human activity along an urban disturbance gradient.Frontiers in Ecology and Evolution , 9.
Fieberg, J. & Ellner, S.P. (2001). Stochastic matrix models for
conservation and management: A comparative review of methods.Ecology Letters , 4, 244–266.
Fletcher Jr., R.J., Hefley, T.J., Robertson, E.P., Zuckerberg, B.,
McCleery, R.A. & Dorazio, R.M. (2019). A practical guide for combining
data to model species distributions. Ecology , 100, e02710.
Fryxell, J.M., Avgar, T., Liu, B., Baker, J.A., Rodgers, A.R., Shuter,
J., et al. (2020). Anthropogenic disturbance and population
viability of woodland caribou in Ontario. The Journal of Wildlife
Management , 84, 636–650.
Fulton, E.A. (2010). Approaches to end-to-end ecosystem models.Journal of Marine Systems , 81, 171–183.
Galic, N., Sullivan, L.L., Grimm, V. & Forbes, V.E. (2018). When things
don’t add up: quantifying impacts of multiple stressors from individual
metabolism to ecosystem processing. Ecology Letters , 21,
568–577.
Gamelon, M., Jenouvrier, S., Lindner, M., Sæther, B.-E. & Visser, M.E.
(2023). Detecting climate signals cascading through levels of biological
organization. Nature Climate Change , 13, 985–989.
Geary, W.L., Bode, M., Doherty, T.S., Fulton, E.A., Nimmo, D.G.,
Tulloch, A.I.T., et al. (2020). A guide to ecosystem models and
their environmental applications. Nature Ecology & Evolution , 4,
1459–1471.
Gerber, L.R. (2006). Including behavioral data in demographic models
improves estimates of population viability. Frontiers in Ecology
and the Environment , 4, 419–427.
Getz, W.M. & Haight, R.G. (1989). Population harvesting:
demographic models of fish, forest, and animal resources . Princeton
University Press.
Goel, N., Guttal, V., Levin, S.A. & Staver, A.C. (2020). Dispersal
Increases the Resilience of Tropical Savanna and Forest Distributions.The American Naturalist , 195, 833–850.
Goicolea, T., Lewison, R.L., Mateo-Sánchez, M.C. & Jennings, M.K.
(2023). Dynamic connectivity analyses to inform management of the
invasive American mink and its native competitor, the European mink.Biological Invasions , 25, 3583–3601.
Gomez, A. (2018). Cuatro años del proyecto LIFE Lutreola Spain .
Available at:
http://lifelutreolaspain.com/en/life-lutreola-spain-project/the-project.html.
Last accessed 20 January 2025.
Gosselin, J., Zedrosser, A., Swenson, J.E. & Pelletier, F. (2015). The
relative importance of direct and indirect effects of hunting mortality
on the population dynamics of brown bears. Proceedings of the
Royal Society B: Biological Sciences , 282, 20141840.
Grente, O., Bauduin, S., Santostasi, N.L., Chamaillé-Jammes, S.,
Duchamp, C., Drouet-Hoguet, N., et al. (2024). Evaluating the
effects of wolf culling on livestock predation when considering wolf
population dynamics in an individual-based model. Wildlife
Biology , e01227.
Guisan, A., Thuiller, W. & Zimmermann, N.E. (2017). Habitat
suitability and distribution models: with applications in R . Cambridge
University Press.
Hall, A.J., McConnell, B.J., Schwacke, L.H., Ylitalo, G.M., Williams, R.
& Rowles, T.K. (2018). Predicting the effects of polychlorinated
biphenyls on cetacean populations through impacts on immunity and calf
survival. Environmental Pollution , 233, 407–418.
Hao, T., Elith, J., Lahoz-Monfort, J.J. & Guillera-Arroita, G. (2020).
Testing whether ensemble modelling is advantageous for maximising
predictive performance of species distribution models. Ecography ,
43, 549–558.
Harris, S. & Rayner, J.M.V. (1986). Urban fox (Vulpes vulpes )
population estimates and habitat requirements in several British cities.Journal of Animal Ecology , 55, 575–591.
Harwood, J., Booth, C., Sinclair, R. & Hague, E. (2020). Developing
marine mammal dynamic energy budget models and their potential for
integration into the iPCoD framework. Scottish Marine and
Freshwater Science , 11, 12328–1.
Hendry, A.P., Farrugia, T.J. & Kinnison, M.T. (2008). Human influences
on rates of phenotypic change in wild animal populations.Molecular Ecology , 17, 20–29.
Hin, V., Harwood, J. & de Roos, A.M. (2019). Bio-energetic modeling of
medium-sized cetaceans shows high sensitivity to disturbance in seasons
of low resource supply. Ecological Applications , 29, e01903.
Hoffmann, M. & Sillero-Zubiri, C. (2021). Vulpes vulpes (amended
version of 2016 assessment) ( No. e. T23062A193903628). The IUCN Red
List of Threatened Species 2021.
Holdo, R.M., Fryxell, J.M., Sinclair, A.R.E., Dobson, A. & Holt, R.D.
(2011). Predicted impact of barriers to migration on the Serengeti
wildebeest population. PLoS ONE , 6, e16370.
Houston, A., Clark, C., McNamara, J. & Mangel, M. (1988). Dynamic
models in behavioural and evolutionary ecology. Nature , 332,
29–34.
Hradsky, B.A., Kelly, L.T., Robley, A. & Wintle, B.A. (2019). FoxNet:
An individual-based model framework to support management of an invasive
predator, the red fox. Journal of Applied Ecology , 56,
1460–1470.
Hunter-Ayad, J., Ohlemüller, R., Recio, M.R. & Seddon, P.J. (2020).
Reintroduction modelling: A guide to choosing and combining models for
species reintroductions. Journal of Applied Ecology , 57,
1233–1243.
IPBES. (2019). Global assessment report on biodiversity and
ecosystem services of the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services . Zenodo.
IPBES. (2022). Summary for policymakers of the thematic assessment
of the sustainable use of wild species of the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) .
Zenodo.
Iversen, J.A. (1972). Basal energy metabolism of mustelids.Journal of comparative physiology , 81, 341–344.
Jeltsch, F., Müller, M.S., Grimm, V., Wissel, C. & Brandl, R. (1997).
Pattern formation triggered by rare events: lessons from the spread of
rabies. Proceedings of the Royal Society of London. Series B:
Biological Sciences , 264, 495–503.
Johnson, D.L., Eisaguirre, J.M., Taylor, R.L. & Garlich-Miller, J.L.
(2024). Assessing the population consequences of disturbance and climate
change for the Pacific walrus. Marine Ecology Progress Series ,
740, 193–211.
Johnston, A.S.A., Boyd, R.J., Watson, J.W., Paul, A., Evans, L.C.,
Gardner, E.L., et al. (2019). Predicting population responses to
environmental change from individual-level mechanisms: towards a
standardized mechanistic approach. Proceedings of the Royal
Society B: Biological Sciences , 286, 20191916.
Jordt, A.M., Lange, M., Kramer-Schadt, S., Nielsen, L.H., Nielsen, S.S.,
Thulke, H.-H., et al. (2016). Spatio-temporal modeling of the
invasive potential of wild boar—a conflict-prone species—using
multi-source citizen science data. Preventive Veterinary
Medicine , 124, 34–44.
Karban, R. & De Valpine, P. (2010). Population dynamics of an Arctiid
caterpillar–tachinid parasitoid system using state-space models.Journal of Animal Ecology , 79, 650–661.
Kays, R., Parsons, A.W., Baker, M.C., Kalies, E.L., Forrester, T.,
Costello, R., et al. (2017). Does hunting or hiking affect
wildlife communities in protected areas? Journal of Applied
Ecology , 54, 242–252.
Kelleher, S., Guillera-Arroita, G., Elith, J. & Briscoe, N. (2024).
Twenty years of dynamic occupancy models: a review of applications and
look to the future.
Kiik, K., Maran, T., Nemvalts, K., Sandre, S.-L. & Tammaru, T. (2017).
Reproductive parameters of critically endangered European mink
(Mustela lutreola ) in captivity. Animal Reproduction
Science , 181, 86–92.
Klanjscek, T., Caswell, H., Neubert, M.G. & Nisbet, R.M. (2006).
Integrating dynamic energy budgets into matrix population models.Ecological Modelling , 196, 407–420.
Kooijman, S.A.L.M. (2000). Dynamic energy and mass budgets in
biological systems . Cambridge University Press.
Kooijman, S.A.L.M. (2010). Dynamic energy budget theory for
metabolic organisation . Cambridge University Press.
Kooijman, S.A.L.M. & Augustine, S. (2022). The comparative energetics
of the carnivorans and pangolins. Conservation Physiology , 10,
coac052.
Lande, R. (1993). Risks of population extinction from demographic and
environmental stochasticity and random catastrophes. The American
Naturalist , 142, 911–927.
Laplanche, C., Elger, A., Santoul, F., Thiede, G.P. & Budy, P. (2018).
Modeling the fish community population dynamics and forecasting the
eradication success of an exotic fish from an alpine stream.Biological Conservation , 223, 34–46.
Larson, C.L., Reed, S.E., Merenlender, A.M. & Crooks, K.R. (2016).
Effects of Recreation on Animals Revealed as Widespread through a Global
Systematic Review. PLoS ONE , 11, e0167259.
Lebreton, J.-D. & Gimenez, O. (2013). Detecting and estimating density
dependence in wildlife populations. The Journal of Wildlife
Management , 77, 12–23.
Lerch, B.A., Rudrapatna, A., Rabi, N., Wickman, J., Koffel, T. &
Klausmeier, C.A. (2023). Connecting local and regional scales with
stochastic metacommunity models: Competition, ecological drift, and
dispersal. Ecological Monographs , 93, e1591.
Levins, R. (1966). The strategy of model building in population biology.American scientist , 54, 421–431.
Libois, R. (2001). Etude préliminaire du régime alimentaire du
Vison d’Europe (Mustela lutreola) dans le Sud-Ouest de la France –
Rapport préliminaire de la seconde phrase . Groupe Vison d’Europe –
Plan de restauration Vison d’Europe.
Lieury, N., Ruette, S., Devillard, S., Albaret, M., Drouyer, F.,
Baudoux, B., et al. (2015). Compensatory immigration challenges
predator control: An experimental evidence-based approach improves
management. The Journal of Wildlife Management , 79, 425–434.
Lika, K., Kearney, M.R., Freitas, V., van der Veer, H.W., van der Meer,
J., Wijsman, J.W.M., et al. (2011). The “covariation method”
for estimating the parameters of the standard Dynamic Energy Budget
model I: Philosophy and approach. Journal of Sea Research , 66,
270–277.
Loeuille, N. (2019). Eco-evolutionary dynamics in a disturbed world:
implications for the maintenance of ecological networks.
Lusardi, L., André, E., Castañeda, I., Lemler, S., Lafitte, P.,
Zarzoso-Lacoste, D., et al. (2024). Methods for comparing
theoretical models parameterized with field data using biological
criteria and Sobol analysis. Ecological Modelling , 493, 110728.
Lytle, D.A. & Tonkin, J.D. (2023). Matrix community models for ecology
and evolution. npj Biodiversity , 2, 1–9.
Macdonald, D. (1981). Resource dispersion and the social organization of
the red fox (Vulpes vulpes ). Presented at the Worldwide Furbearer
Conference Proceedings, 1981, University of Maryland Press, pp.
918–949.
Mahevas, S. & Sigrid, L. (2024). Modelling marine ecosystems and
choosing a management scenario that takes uncertainty into account - the
MIMI experiment. SEANOE .
Mañas, S., Gómez, A., Asensio, V., Palazón, S., Pǒdra, M., Casal, J.,et al. (2016). Demographic structure of three riparian mustelid
species in Spain. European Journal of Wildlife Research , 62,
119–129.
Mangel, M. & Clark, C.W. (1988). Dynamic Modeling in Behavioral
Ecology . Princeton University Press.
Maran, T., Põdra, M., Harrington, L.A. & Macdonald, D.W. (2017).
European mink: restoration attempts for a species on the brink of
extinction. In: Biology and Conservation of Musteloids . Oxford
University Press, pp. 370–388.
Maran, T., Skumatov, D., Gomez, A., Põdra, M., Abramov, A.V. & Dinets,
V. (2016). Mustela lutreola ( No. e. T14018A45199861). The IUCN
Red List of Threatened Species 2016.
Martin, B.T., Zimmer, E.I., Grimm, V. & Jager, T. (2012). Dynamic
Energy Budget theory meets individual-based modelling: a generic and
accessible implementation. Methods in Ecology and Evolution , 3,
445–449.
Mathewson, P.D., Moyer-Horner, L., Beever, E.A., Briscoe, N.J., Kearney,
M., Yahn, J.M., et al. (2017). Mechanistic variables can enhance
predictive models of endotherm distributions: The American pika under
current, past, and future climates. Global Change Biology , 23,
1048–1064.
McCaffery, R., Solonen, A. & Crone, E. (2012). Frog population
viability under present and future climate conditions: a Bayesian
state-space approach. Journal of Animal Ecology , 81, 978–985.
McGrosky, A. & Pontzer, H. (2023). The fire of evolution: energy
expenditure and ecology in primates and other endotherms. Journal
of Experimental Biology , 226, jeb245272.
McHuron, E.A., Aerts, L., Gailey, G., Sychenko, O., Costa, D.P., Mangel,
M., et al. (2021). Predicting the population consequences of
acoustic disturbance, with application to an endangered gray whale
population. Ecological Applications , 31, e02440.
van der Meer, J. (2006). Metabolic theories in ecology. Trends in
Ecology & Evolution , 21, 136–140.
Meia, J. (1994). Social organisation of a red fox (Vulpes vulpes )
population in a mountainous habitat.
Merow, C., Dahlgren, J.P., Metcalf, C.J.E., Childs, D.Z., Evans, M.E.K.,
Jongejans, E., et al. (2014). Advancing population ecology with
integral projection models: a practical guide. Methods in Ecology
and Evolution , 5, 99–110.
Metcalf, C.J.E., Rose, K.E., Childs, D.Z., Sheppard, A.W., Grubb, P.J.
& Rees, M. (2008). Evolution of flowering decisions in a stochastic,
density-dependent environment. Proceedings of the National Academy
of Sciences , 105, 10466–10470.
Metz, J.A.J. & Diekmann, O. (Eds.). (1986). The Dynamics of
Physiologically Structured Populations . Lecture Notes in
Biomathematics. Springer.
Millsap, B.A., Zimmerman, G.S., Kendall, W.L., Barnes, J.G., Braham,
M.A., Bedrosian, B.E., et al. (2022). Age-specific survival
rates, causes of death, and allowable take of golden eagles in the
western United States. Ecological Applications , 32, e2544.
Molnár, P.K., Derocher, A.E., Thiemann, G.W. & Lewis, M.A. (2010).
Predicting survival, reproduction and abundance of polar bears under
climate change. Biological Conservation , Conservation planning
within emerging global climate and economic realities, 143, 1612–1622.
Moorcroft, P.R. & Lewis, M.A. (2006). Mechanistic Home Range
Analysis . Princeton University Press.
Morris, W.F. & Doak, D.F. (2002). Quantitative conservation
biology: theory and practice of population viability analysis . Sinauer
Associates.
Nater, C.R., Hofhuis, S.P., Grainger, M., Flagstad, Ø., Ims, R.A.,
Killengreen, S.T., et al. (2024). An integrated population
modelling workflow for supporting mesopredator management.
National Academies of Sciences, Engineering, and Medicine. (2017).Approaches to understanding the cumulative effects of stressors on
marine mammals . The National Academies Press, Washington, DC.
Nichols, J.D. (2021). Adaptive management: making recurrent decisions in
the face of uncertainty. In: Demographic Methods across the Tree
of Life . Oxford University Press, pp. 313–328.
Oppel, S., Clark, B.L., Risi, M.M., Horswill, C., Converse, S.J., Jones,
C.W., et al. (2022). Cryptic population decrease due to invasive
species predation in a long-lived seabird supports need for eradication.Journal of Applied Ecology , 59, 2059–2070.
Otto, S.P. & Day, T. (2011). A biologist’s guide to mathematical
modeling in ecology and evolution . Princeton University Press.
Ovaskainen, O. & Hanski, I. (2001). Spatially structured metapopulation
models: global and local assessment of metapopulation capacity.Theoretical Population Biology , 60, 281–302.
Palazón, S., Ruiz-Olmo, J. & Gosàlbez, J. (2004). Diet of European mink
(Mustela lutreola ) in Northern Spain. Mammalia , 68,
159–165.
Palstra, F.P. & Ruzzante, D.E. (2008). Genetic estimates of
contemporary effective population size: what can they tell us about the
importance of genetic stochasticity for wild population persistence?Molecular Ecology , 17, 3428–3447.
Paniw, M., James, T.D., Ruth Archer, C., Römer, G., Levin, S.,
Compagnoni, A., et al. (2021). The myriad of complex demographic
responses of terrestrial mammals to climate change and gaps of
knowledge: A global analysis. Journal of Animal Ecology , 90,
1398–1407.
Parker, K.L., Barboza, P.S. & Gillingham, M.P. (2009). Nutrition
integrates environmental responses of ungulates. Functional
Ecology , 23, 57–69.
Penman, T.D., Keith, D.A., Elith, J., Mahony, M.J., Tingley, R.,
Baumgartner, J.B., et al. (2015). Interactive effects of climate
change and fire on metapopulation viability of a forest-dependent frog
in south-eastern Australia. Biological Conservation , 190,
142–153.
Péron, G. & Koons, D.N. (2012). Integrated modeling of communities:
parasitism, competition, and demographic synchrony in sympatric ducks.Ecology , 93, 2456–2464.
Pichler, M. & Hartig, F. (2023). Machine learning and deep learning—A
review for ecologists. Methods in Ecology and Evolution , 14,
994–1016.
Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L.,
Joppa, L.N., et al. (2014). The biodiversity of species and their
rates of extinction, distribution, and protection. Science , 344,
1246752.
Pirotta, E., Mangel, M., Costa, D.P., Goldbogen, J., Harwood, J., Hin,
V., et al. (2019). Anthropogenic disturbance in a changing
environment: modelling lifetime reproductive success to predict the
consequences of multiple stressors on a migratory population.Oikos , 128, 1340–1357.
Plard, F., Turek, D., Grüebler, M.U. & Schaub, M. (2019). IPM2: toward
better understanding and forecasting of population dynamics.Ecological Monographs , 89, e01364.
Põdra, M. (2021). Expansion of alien American mink, Neovison
vison , and translocation of captive-bred European mink, Mustela
lutreola : Assessing impact on the native species conservation. School
of Natural Science and Health, Tallinna Ülikool, Estonia.
Pratzer, M., Nill, L., Kuemmerle, T., Zurell, D. & Fandos, G. (2023).
Large carnivore range expansion in Iberia in relation to different
scenarios of permeability of human-dominated landscapes. Diversity
and Distributions , 29, 75–88.
Quéroué, M., Barbraud, C., Barraquand, F., Turek, D., Delord, K.,
Pacoureau, N., et al. (2021). Multispecies integrated population
model reveals bottom-up dynamics in a seabird predator–prey system.Ecological Monographs , 91, e01459.
Radchuk, V., Johst, K., Groeneveld, J., Grimm, V. & Schtickzelle, N.
(2013). Behind the scenes of population viability modeling: Predicting
butterfly metapopulation dynamics under climate change. Ecological
Modelling , 259, 62–73.
Rademaker, M., van Leeuwen, A. & Smallegange, I.M. (2024). Why we
cannot always expect life history strategies to directly inform on
sensitivity to environmental change. Journal of Animal Ecology ,
93, 348–366.
Refsgaard, J.C., van der Sluijs, J.P., Brown, J. & van der Keur, P.
(2006). A framework for dealing with uncertainty due to model structure
error. Advances in Water Resources , 29, 1586–1597.
Reimer, J.R., Mangel, M., Derocher, A.E. & Lewis, M.A. (2019). Modeling
optimal responses and fitness consequences in a changing Arctic.Global Change Biology , 25, 3450–3461.
Rezaei, S., Mohammadi, A., Bencini, R., Rooney, T. & Naderi, M. (2022).
Identifying connectivity for two sympatric carnivores in human-dominated
landscapes in central Iran. PLoS ONE , 17, e0269179.
Roemer, G.W., Donlan, C.J. & Courchamp, F. (2002). Golden eagles, feral
pigs, and insular carnivores: How exotic species turn native predators
into prey. Proceedings of the National Academy of Sciences , 99,
791–796.
Rogers, L.A., Storvik, G.O., Knutsen, H., Olsen, E.M. & Stenseth, N.C.
(2017). Fine-scale population dynamics in a marine fish species inferred
from dynamic state-space models. Journal of Animal Ecology , 86,
888–898.
de Roos, A.M. (1997). A gentle introduction to physiologically
structured population models. In: Structured-population models in
marine, terrestrial, and freshwater systems . Springer, pp. 119–204.
de Roos, A.M. (2021). PSPManalysis: Steady-state and bifurcation
analysis of physiologically structured population models. Methods
in Ecology and Evolution , 12, 383–390.
de Roos, A.M. & Persson, L. (2013). Population and Community
Ecology of Ontogenetic Development . Princeton University Press.
de Roos, A.M., Schellekens, T., Van Kooten, T., Van De Wolfshaar, K.,
Claessen, D. & Persson, L. (2008). Simplifying a physiologically
structured population model to a stage-structured biomass model.Theoretical population biology , 73, 47–62.
Rounsevell, M.D.A., Arneth, A., Brown, C., Cheung, W.W.L., Gimenez, O.,
Holman, I., et al. (2021). Identifying uncertainties in scenarios
and models of socio-ecological systems in support of decision-making.One Earth , 4, 967–985.
Russo, L.F., Fernández-González, Á., Penteriani, V., del Mar Delgado,
M., Palazón, S., Loy, A., et al. (2023). The different fate of
the Pyrenean desman (Galemys pyrenaicus ) and the Eurasian otter
(Lutra lutra ) under climate and land use changes. Animals ,
13, 274.
Santika, T., McAlpine, C.A., Lunney, D., Wilson, K.A. & Rhodes, J.R.
(2014). Modelling species distributional shifts across broad spatial
extents by linking dynamic occupancy models with public-based surveys.Diversity and Distributions , 20, 786–796.
Schaub, M. & Abadi, F. (2011). Integrated population models: a novel
analysis framework for deeper insights into population dynamics.Journal of Ornithology , 152, 227–237.
Schmolke, A., Thorbek, P., DeAngelis, D.L. & Grimm, V. (2010).
Ecological models supporting environmental decision making: a strategy
for the future. Trends in Ecology & Evolution , 25, 479–486.
Schweiger, E.W., Grace, J.B., Cooper, D., Bobowski, B. & Britten, M.
(2016). Using structural equation modeling to link human activities to
wetland ecological integrity. Ecosphere , 7, e01548.
Schwensow, N.I., Heni, A.C., Schmid, J., Montero, B.K., Brändel, S.D.,
Halczok, T.K., et al. (2022). Disentangling direct from indirect
effects of habitat disturbance on multiple components of biodiversity.Journal of Animal Ecology , 91, 2220–2234.
Silva, W.T.A.F., Harding, K.C., Marques, G.M., Bäcklin, B.M., Sonne, C.,
Dietz, R., et al. (2020). Life cycle bioenergetics of the gray
seal (Halichoerus grypus ) in the Baltic Sea: Population response
to environmental stress. Environment International , 145, 106145.
Simmonds, E.G., Adjei, K.P., Cretois, B., Dickel, L., González-Gil, R.,
Laverick, J.H., et al. (2024). Recommendations for quantitative
uncertainty consideration in ecology and evolution. Trends in
Ecology & Evolution , 39, 328–337.
Simon, R.N. & Fortin, D. (2019). Linking habitat use to mortality and
population viability to disarm an ecological trap. Biological
Conservation , 236, 366–374.
Skogen, M.D., Aarflot, J.M., García-García, L.M., Ji, R.,
Ruiz-Villarreal, M., Almroth-Rosell, E., et al. (2024). Bridging
the gap: integrating models and observations for better ecosystem
understanding. Marine Ecology Progress Series , 739, 257–268.
Smallegange, I.M., Caswell, H., Toorians, M.E. & de Roos, A.M. (2017).
Mechanistic description of population dynamics using dynamic energy
budget theory incorporated into integral projection models.Methods in Ecology and Evolution , 8, 146–154.
Smallegange, I.M., Flotats Avilés, M. & Eustache, K. (2020). Unusually
paced life history strategies of marine megafauna drive atypical
sensitivities to environmental variability. Frontiers in Marine
Science , 7.
Smith, J.A., Duane, T.P. & Wilmers, C.C. (2019). Moving through the
matrix: Promoting permeability for large carnivores in a human-dominated
landscape. Landscape and Urban Planning , 183, 50–58.
Soudijn, F.H., van Kooten, T., Slabbekoorn, H. & de Roos, A.M. (2020).
Population-level effects of acoustic disturbance in Atlantic cod: a
size-structured analysis based on energy budgets. Proceedings of
the Royal Society B: Biological Sciences , 287, 20200490.
Souto-Veiga, R., Groeneveld, J., Enright, N.J., Fontaine, J.B. &
Jeltsch, F. (2024). Climate change may shift metapopulations towards
unstable source-sink dynamics in a fire-killed, serotinous shrub.Ecology and Evolution , 14, e11488.
Szangolies, L., Gallagher, C.A. & Jeltsch, F. (2024). Individual
energetics scale up to community coexistence: Movement, metabolism and
biodiversity dynamics in fragmented landscapes. Journal of Animal
Ecology , 93, 1065–1077.
Takashina, N. (2016). Simple rules for establishment of effective marine
protected areas in an age-structured metapopulation. Journal of
Theoretical Biology , 391, 88–94.
Tédonzong, L.R.D., Willie, J., Makengveu, S.T., Lens, L. & Tagg, N.
(2020). Variation in behavioral traits of two frugivorous mammals may
lead to differential responses to human disturbance. Ecology and
Evolution , 10, 3798–3813.
Thompson, B.K., Olden, J.D. & Converse, S.J. (2021). Mechanistic
invasive species management models and their application in
conservation. Conservation Science and Practice , 3, e533.
Thunell, V., Gårdmark, A., Huss, M. & Vindenes, Y. (2023). Optimal
energy allocation trade-off driven by size-dependent physiological and
demographic responses to warming. Ecology , 104, e3967.
Tischendorf, L., Thulke, H.-H., Staubach, C., Müller, M.S., Jeltsch, F.,
Goretzki, J., et al. (1998). Chance and risk of controlling
rabies in large–scale and long–term immunized fox populations.Proceedings of the Royal Society of London. Series B: Biological
Sciences , 265, 839–846.
Tonini, F., Hochmair, H.H., Scheffrahn, R.H. & DeAngelis, D.L. (2014).
Stochastic spread models: A comparison between an individual-based and a
lattice-based model for assessing the expansion of invasive termites
over a landscape. Ecological Informatics , 24, 222–230.
Tucker, A.M., McGowan, C.P., Mulero Oliveras, E.S., Angeli, N.F. &
Zegarra, J.P. (2021). A demographic projection model to support
conservation decision making for an endangered snake with limited
monitoring data. Animal Conservation , 24, 291–301.
Urban, M.C., Bocedi, G., Hendry, A.P., Mihoub, J.-B., Pe’er, G., Singer,
A., et al. (2016). Improving the forecast for biodiversity under
climate change. Science , 353, aad8466.
Urban, M.C., Travis, J.M.J., Zurell, D., Thompson, P.L., Synes, N.W.,
Scarpa, A., et al. (2022). Coding for life: Designing a platform
for projecting and protecting global biodiversity. BioScience ,
72, 91–104.
Uribe‐Rivera, D.E., Guillera‐Arroita, G., Windecker, S.M., Pliscoff, P.
& Wintle, B.A. (2023). The predictive performance of process‐explicit
range change models remains largely untested. Ecography , 2023,
e06048.
Varriale, M. & Gomes, A. (1998). A study of a three species food chain.Ecological Modelling , 110, 119–133.
Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones,
K.R., et al. (2016). Sixteen years of change in the global
terrestrial human footprint and implications for biodiversity
conservation. Nature Communications , 7, 12558.
Voinov, A. & Bousquet, F. (2010). Modelling with stakeholders.Environmental Modelling & Software , Thematic Issue - Modelling
with Stakeholders, 25, 1268–1281.
Wallace, K., Leslie, A. & Coulson, T. (2013). Re-evaluating the effect
of harvesting regimes on Nile crocodiles using an integral projection
model. Journal of Animal Ecology , 82, 155–165.
Wamberg, S. & Tauson, A.-H. (1998). Daily milk intake and body water
turnover in suckling mink (Mustela vison ) kits. Comparative
Biochemistry and Physiology Part A: Molecular & Integrative
Physiology , 119, 931–939.
Westcott, D.A., Caley, P., Heersink, D.K. & McKeown, A. (2018). A
state-space modelling approach to wildlife monitoring with application
to flying-fox abundance. Scientific Reports , 8, 4038.
White, J.W., Nickols, K.J., Malone, D., Carr, M.H., Starr, R.M.,
Cordoleani, F., et al. (2016). Fitting state-space integral
projection models to size-structured time series data to estimate
unknown parameters. Ecological Applications , 26, 2677–2694.
Zavaleta, E.S., Hobbs, R.J. & Mooney, H.A. (2001). Viewing invasive
species removal in a whole-ecosystem context. Trends in Ecology &
Evolution , 16, 454–459.
Zhang, B., DeAngelis, D.L. & Ni, W.-M. (2021). Carrying capacity of
spatially distributed metapopulations. Trends in Ecology &
Evolution , 36, 164–173.
Zhao, Q., Arnold, T.W., Devries, J.H., Howerter, D.W., Clark, R.G. &
Weegman, M.D. (2019). Land-use change increases climatic vulnerability
of migratory birds: Insights from integrated population modelling.Journal of Animal Ecology , 88, 1625–1637.
Zipkin, E.F., Inouye, B.D. & Beissinger, S.R. (2019). Innovations in
data integration for modeling populations. Ecology , 100, 1–3.