Conflict of Interest
The authors have no conflicts of interest to declare.
References:
1. Flenady V, Koopmans L, Middleton P, Frøen JF, Smith GC, Gibbons K, et al. Major risk factors for stillbirth in high-income countries: a systematic review and meta-analysis. Lancet. 2011;377(9774):1331-40.2. Kabiri D, Romero R, Gudicha DW, Hernandez-Andrade E, Pacora P, Benshalom-Tirosh N, et al. Prediction of adverse perinatal outcome by fetal biometry: comparison of customized and population-based standards. Ultrasound Obstet Gynecol. 2020;55(2):177-88.3. Gardosi J, and Francis A. A customized standard to assess fetal growth in a US population. Am J Obstet Gynecol. 2009;201(1):25.e1-7.4. Saperstein A, and Penner AM. Racial Fluidity and Inequality in the United States. American Journal of Sociology. 2012;118(3):676-727.5. Ganzevoort W, Thilaganathan B, Baschat A, and Gordijn JS. Point. American Journal of Obstetrics and Gynecology. 2019;220(1):74-82.6. Vyas AD, Eisenstein GL, and Jones SD. Hidden in Plain Sight — Reconsidering the Use of Race Correction in Clinical Algorithms. New England Journal of Medicine. 2020;383(9):874-82.7. Chen J, Bacelis J, Sole-Navais P, Srivastava A, Juodakis J, Rouse A, et al. Dissecting maternal and fetal genetic effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: A mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother–infant pairs.PLOS Medicine. 2020;17(8):e1003305.8. Beaumont NR, Kotecha JS, Wood RA, Knight AB, Sebert S, Mccarthy IM, et al. Common maternal and fetal genetic variants show expected polygenic effects on risk of small- or large-for-gestational-age (SGA or LGA), except in the smallest 3% of babies. PLOS Genetics. 2020;16(12):e1009191.9. Engelbrechtsen L, Gybel-Brask D, Mahendran Y, Crusell M, Hansen HT, Schnurr MT, et al. Birth weight variants are associated with variable fetal intrauterine growth from 20 weeks of gestation. Scientific Reports. 2018;8(1).10. Martin RA, Gignoux RC, Walters KR, Wojcik LG, Neale MB, Gravel S, et al. Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations. The American Journal of Human Genetics. 2017;100(4):635-49.11. Need CA, and Goldstein BD. Next generation disparities in human genomics: concerns and remedies.Trends in Genetics. 2009;25(11):489-94.12. Popejoy BA, and Fullerton MS. Genomics is failing on diversity. Nature. 2016;538(7624):161-4.13. Haas DM, Parker CB, Wing DA, Parry S, Grobman WA, Mercer BM, et al. A description of the methods of the Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be (nuMoM2b). Am J Obstet Gynecol. 2015;212(4):539 e1- e24.14. Pedersen SB, and Quinlan RA. Who’s Who? Detecting and Resolving Sample Anomalies in Human DNA Sequencing Studies with Peddy. The American Journal of Human Genetics. 2017;100(3):406-13.15. Khan RR, Guerrero RF, Wapner RJ, Hahn MW, Raja A, Salleb-Aouissi A, et al. Genetic polymorphisms associated with adverse pregnancy outcomes in nulliparas. Sci Rep. 2024;14(1):10514.16. Louis BMG, Grewal J, Albert SP, Sciscione A, Wing AD, Grobman AW, et al. Racial/ethnic standards for fetal growth: the NICHD Fetal Growth Studies. American Journal of Obstetrics and Gynecology. 2015;213(4):449.e1-.e41.17. Blue RN, Grobman AW, Larkin CJ, Scifres MC, Simhan NH, Chung HJ, et al. Customized versus Population Growth Standards for Morbidity and Mortality Risk Stratification Using Ultrasonographic Fetal Growth Assessment at 22 to 29 Weeks’ Gestation.American Journal of Perinatology. 2021;38(S 01):e46-e56.18. Alexander, Kogan, Himes, Mor, and Goldenberg. Racial differences in birthweight for gestational age and infant mortality in extremely‐low‐risk US populations. Paediatric and Perinatal Epidemiology. 1999;13(2):205-17.19. Jee HY, Thibord F, Dominguez A, Sept C, Boulier K, Venkateswaran V, et al. Multi-ancestry polygenic risk scores for venous thromboembolism. Human Molecular Genetics. 2024;33(18):1584-91.20. Dikilitas O, Schaid JD, Kosel LM, Carroll JR, Chute GC, Denny CJ, et al. Predictive Utility of Polygenic Risk Scores for Coronary Heart Disease in Three Major Racial and Ethnic Groups.The American Journal of Human Genetics. 2020;106(5):707-16.21. Fahed CA, Aragam GK, Hindy G, Chen IY-D, Chaudhary K, Dobbyn A, et al. Transethnic Transferability of a Genome-Wide Polygenic Score for Coronary Artery Disease. Circulation: Genomic and Precision Medicine. 2021;14(1).22. Tcheandjieu C, Zhu X, Hilliard TA, Clarke LS, Napolioni V, Ma S, et al. Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nature Medicine. 2022;28(8):1679-92.23. Jones CA, Patki A, Srinivasasainagendra V, Tiwari KH, Armstrong DN, Chaudhary SN, et al. Single-Ancestry versus Multi-Ancestry Polygenic Risk Scores for CKD in Black American Populations. Journal of the American Society of Nephrology. 2024;35(11):1558-69.24. Park LS, Cheng I, and Haiman AC. Genome-Wide Association Studies of Cancer in Diverse Populations.Cancer Epidemiology, Biomarkers & Prevention. 2018;27(4):405-17.25. Teixeira KS, Rossi NPF, Patane LJ, Neyra MJ, Jensen VVA, Horta LB, et al. Assessing the predictive efficacy of European-based systolic blood pressure polygenic risk scores in diverse Brazilian cohorts. Scientific Reports. 2024;14(1).26. Clarke LS, Assimes LT, and Tcheandjieu C. The Propagation of Racial Disparities in Cardiovascular Genomics Research. Circulation: Genomic and Precision Medicine. 2021;14(5).27. Martin RA, Kanai M, Kamatani Y, Okada Y, Neale MB, and Daly JM. Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics. 2019;51(4):584-91.28. Ge T, Irvin RM, Patki A, Srinivasasainagendra V, Lin Y-F, Tiwari KH, et al. Development and validation of a trans-ancestry polygenic risk score for type 2 diabetes in diverse populations. Genome Medicine. 2022;14(1).29. Wang Y, Tsuo K, Kanai M, Neale MB, and Martin RA. Challenges and Opportunities for Developing More Generalizable Polygenic Risk Scores. Annual Review of Biomedical Data Science. 2022;5(1):293-320.30. Sun Q, Rowland TB, Chen J, Mikhaylova VA, Avery C, Peters U, et al. Improving polygenic risk prediction in admixed populations by explicitly modeling ancestral-differential effects via GAUDI. Nature Communications. 2024;15(1).31. Honigberg MC, Truong B, Khan RR, Xiao B, Bhatta L, Vy HMT, et al. Polygenic prediction of preeclampsia and gestational hypertension. Nat Med. 2023;29(6):1540-9.32. Pagel KA, Chu H, Ramola R, Guerrero RF, Chung JH, Parry S, et al. Association of Genetic Predisposition and Physical Activity With Risk of Gestational Diabetes in Nulliparous Women. JAMA Netw Open. 2022;5(8):e2229158.
Table 1. Demographic and obstetric characteristics of nuMoM2b participants meeting secondary analysis inclusion criteria.