References
Barringer, B. C., Koenig, W. D., & Knops, J. M. (2013). Interrelationships among life-history traits in three California oaks. Oecologia, 171, 129-139.
Bogdziewicz, M., Pesendorfer, M., Crone, E. E., Pérez‐Izquierdo, C., & Bonal, R. (2020). Flowering synchrony drives reproductive success in a wind‐pollinated tree. Ecology Letters, 23(12), 1820-1826.
Bogdziewicz, M., Chybicki, I., Szymkowiak, J., Ulaszewski, B., Burczyk, J., Szarek-Łukaszewska, G., … & Żywiec, M. (2024). Relatives reproduce in synchrony: kinship and individual condition shape intraspecific variation in masting phenotype. Proceedings of the Royal Society B, 291(2017), 20232732.
Catorci, A., Cesaretti, S., Gatti, R., & Tardella, F. M. (2012). Trait-related flowering patterns in submediterranean mountain meadows. Plant Ecology, 213, 1315-1328.
Chaloupecká, E., & Lepš, J. (2004). Equivalence of competitor effects and tradeoff between vegetative multiplication and generative reproduction: case study with Lychnis flos-cuculi andMyosotis nemorosa . Flora-Morphology, Distribution, Functional Ecology of Plants, 199(2), 157-167.
Crone, E. E., Miller, E., & Sala, A. (2009). How do plants know when other plants are flowering? Resource depletion, pollen limitation and mast‐seeding in a perennial wildflower. Ecology Letters, 12(11), 1119-1126.
De Kort, H., Panis, B., Helsen, K., Douzet, R., Janssens, S. B., & Honnay, O. (2020). Pre‐adaptation to climate change through topography‐driven phenotypic plasticity. Journal of Ecology, 108(4), 1465-1474.
Doak, D. F., Bigger, D., Harding, E. K., Marvier, M. A., O’malley, R. E., & Thomson, D. (1998). The statistical inevitability of stability-diversity relationships in community ecology. The American Naturalist, 151(3), 264-276.
Douda, J., Doudová, J., Holeštová, A., Boublík, K., Havrdová, A., & Slezák, M. (2021). Interplay of above‐and belowground resource limitations: a competition–facilitation shift maintains species coexistence. Oikos, 130(12), 2122-2135.
Douda, J., Doudová, J., Hulík, J., Havrdová, A., & Boublík, K. (2018). Reduced competition enhances community temporal stability under conditions of increasing environmental stress. Ecology, 99(10), 2207-2216.
Douda, J., Doudová-Kochánková, J., Boublík, K., & Drašnarová, A. (2012). Plant species coexistence at local scale in temperate swamp forest: test of habitat heterogeneity hypothesis. Oecologia, 169, 523-534.
Doudová, J., & Douda, J. (2020). Along with intraspecific functional trait variation, individual performance is key to resolving community assembly processes. Functional Ecology, 34(11), 2362-2374.
Dybzinski, R., & Tilman, D. (2007). Resource use patterns predict long-term outcomes of plant competition for nutrients and light. The American Naturalist, 170(3), 305-318.
Eriksson, O. (1997). Colonization dynamics and relative abundance of three plant species (Antennaria dioica , Hieracium pilosella and Hypochoeris maculata ) in dry semi‐natural grasslands. Ecography, 20(6), 559-568.
Fernández-Martínez, M., Pearse, I., Sardans, J., Sayol, F., Koenig, W. D., LaMontagne, J. M., … & Janssens, I. A. (2019). Nutrient scarcity as a selective pressure for mast seeding. Nature Plants, 5(12), 1222-1228.
Fujita, Y., Venterink, H. O., Van Bodegom, P. M., Douma, J. C., Heil, G. W., Hölzel, N., … & Wassen, M. J. (2014). Low investment in sexual reproduction threatens plants adapted to phosphorus limitation. Nature, 505(7481), 82-86.
Grime, J. P., & Hunt, R. (1975). Relative growth-rate: its range and adaptive significance in a local flora. Journal of Ecology, 393-422.
Gross, N., Kunstler, G., Liancourt, P., De Bello, F., Suding, K. N., & Lavorel, S. (2009). Linking individual response to biotic interactions with community structure: a trait‐based framework. Functional Ecology, 23(6), 1167-1178.
Hacket‐Pain, A. J., Ascoli, D., Vacchiano, G., Biondi, F., Cavin, L., Conedera, M., … & Zang, C. S. (2018). Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecology Letters, 21(12), 1833-1844.
Han, Q., Kabeya, D., Iio, A., Inagaki, Y., & Kakubari, Y. (2014). Nitrogen storage dynamics are affected by masting events in Fagus crenata. Oecologia, 174, 679-687.
Herben, T., Šerá, B., & Klimešová, J. (2015). Clonal growth and sexual reproduction: tradeoffs and environmental constraints. Oikos, 124(4), 469-476.
Hulík, J., & Douda, J. (2017). Germination strategies of two dominantCarex species in a swamp alder forest: implications for restoration. Biologia, 72(4), 370-377.
Isagi, Y., Sugimura, K., Sumida, A., & Ito, H. (1997). How does masting happen and synchronize? Journal of Theoretical Biology, 187(2), 231-239.
Johnson, A. J., Moore, K. A., & Orth, R. J. (2017). The influence of resource availability on flowering intensity in Zostera marina (L.). Journal of Experimental Marine Biology and Ecology, 490, 13-22.
Keddy, P. A. (2010). Wetland ecology: principles and conservation. Cambridge university press.
Kelly, D., and V. L. Sork. 2002. Mast Seeding in Perennial Plants: Why, How, Where? Annual Review of Ecology and Systematics 33: 427–447.
Kelly, D., Hart, D. E., & Allen, R. B. (2001). Evaluating the wind pollination benefits of mast seeding. Ecology, 82(1), 117-126.
Kettenring, K. M., McCormick, M. K., Baron, H. M., & Whigham, D. F. (2011). Mechanisms of Phragmites australis invasion: feedbacks among genetic diversity, nutrients, and sexual reproduction. Journal of Applied Ecology, 48(5), 1305-1313.
Klebs (1904). Probleme der Entwicklung. I-III Biol. Zentralbl. Bdl. 24.
Kleunen, M. V., Fischer, M., & Schmid, B. (2002). Experimental life‐history evolution: selection on the allocation to sexual reproduction and its plasticity in a clonal plant. Evolution, 56(11), 2168-2177.
Liancourt, P., Callaway, R. M., & Michalet, R. (2005). Stress tolerance and competitive‐response ability determine the outcome of biotic interactions. Ecology, 86(6), 1611-1618.
Makowski, D., Ben-Shachar, M. S., & Lüdecke, D. (2019). bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. Journal of Open Source Software, 4(40), 1541.
Mariotte, P., Vandenberghe, C., Kardol, P., Hagedorn, F., & Buttler, A. (2013). Subordinate plant species enhance community resistance against drought in semi‐natural grasslands. Journal of Ecology, 101(3), 763-773.
Martínková, J., Šmilauer, P., & Mihulka, S. (2002). Phenological pattern of grassland species: relation to the ecological and morphological traits. Flora-Morphology, Distribution, Functional Ecology of Plants, 197(4), 290-302.
Miyazaki, Y., Maruyama, Y., Chiba, Y., Kobayashi, M. J., Joseph, B., Shimizu, K. K., … & Satake, A. (2014). Nitrogen as a key regulator of flowering in Fagus crenata: understanding the physiological mechanism of masting by gene expression analysis. Ecology letters, 17(10), 1299-1309.
Monks, A., Monks, J. M., & Tanentzap, A. J. (2016). Resource limitation underlying multiple masting models makes mast seeding sensitive to future climate change. New Phytologist, 210(2), 419-430.
Montesinos, D., P. Garcia-Fayos & M. Verdu. 2012. Masting uncoupling: mast seeding does not follow all mast flowering episodes in a dioecious juniper tree. Oikos 121: 1725–1736.
Nilsson, S. G., & Wastljung, U. (1987). Seed predation and cross‐pollination in mast‐seeding beech (Fagus sylvatica ) patches. Ecology, 68(2), 260-265.
Pearse, I. S., Koenig, W. D., & Kelly, D. (2016). Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytologist, 212(3), 546-562.
Pesendorfer, M. B., Ascoli, D., Bogdziewicz, M., Hacket-Pain, A., Pearse, I. S., & Vacchiano, G. (2021). The ecology and evolution of synchronized reproduction in long-lived plants. Philosophical Transactions of the Royal Society B, 376(1839), 20200369.
Pulido, F., Moreno, G., García, E., Obrador, J. J., Bonal, R., & Díaz, M. (2014). Resource manipulation reveals flexible allocation rules to growth and reproduction in a Mediterranean evergreen oak. Journal of Plant Ecology, 7(1), 77-85.
R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Reekie, E. G., & Bazzaz, F. A. (1987). Reproductive effort in plants. 1. Carbon allocation to reproduction. The American Naturalist, 129(6), 876-896.
Sack, L. (2004). Responses of temperate woody seedlings to shade and drought: do trade‐offs limit potential niche differentiation?. Oikos, 107(1), 110-127.
Sala, A., Hopping, K., McIntire, E. J., Delzon, S., & Crone, E. E. (2012). Masting in whitebark pine (Pinus albicaulis) depletes stored nutrients. New Phytologist, 196(1), 189-199.
Santos‐del‐Blanco, L., Bonser, S. P., Valladares, F., Chambel, M. R., & Climent, J. (2013). Plasticity in reproduction and growth among 52 range‐wide populations of a M editerranean conifer: adaptive responses to environmental stress. Journal of Evolutionary Biology, 26(9), 1912-1924.
Satake, A., & Iwasa, Y. O. H. (2000). Pollen coupling of forest trees: forming synchronized and periodic reproduction out of chaos. Journal of Theoretical Biology, 203(2), 63-84.
Schoen, D. J., & Dubuc, M. (1990). The evolution of inflorescence size and number: a gamete-packaging strategy in plants. The American Naturalist, 135(6), 841-857.
Silvertown, J. W. (1980). The evolutionary ecology of mast seeding in trees. Biological Journal of the Linnean Society, 14(2), 235-250.
Smaill, S. J., Clinton, P. W., Allen, R. B., & Davis, M. R. (2011). Climate cues and resources interact to determine seed production by a masting species. Journal of Ecology, 99(3), 870-877.
Stenström, A. I. S. J., & Jónsdóttir, I. S. (1997). Responses of the clonal sedge, Carex bigelowii , to two seasons of simulated climate change. Global Change Biology, 3(S1), 89-96.
Sun, S., & Frelich, L. E. (2011). Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species. Journal of Ecology, 99(4), 991-1000.
Thompson, F. L., & Eckert, C. G. (2004). Trade‐offs between sexual and clonal reproduction in an aquatic plant: experimental manipulations vs. phenotypic correlations. Journal of Evolutionary Biology, 17(3), 581-592.
Tilman, D., & Pacala, S. (1993). The Maintenance of Species Richness in Plant Communities. In R. E. Ricklefs, & D. Schluter (Eds.), Species Diversity in Ecological Communities: Historical and Geographical Perspectives (pp. 13-25). Chicago, IL: University of Chicago Press.
Tonnabel, J., David, P., & Pannell, J. R. (2017). Sex-specific strategies of resource allocation in response to competition for light in a dioecious plant. Oecologia, 185, 675-686.
van Lent, F., Verschuure, J. M., & van Veghel, M. L. (1995). Comparative study on populations of Zostera marina L.(eelgrass): in situ nitrogen enrichment and light manipulation. Journal of Experimental Marine Biology and Ecology, 185(1), 55-76.
Westerband, A. C., & Horvitz, C. C. (2017). Early life conditions and precipitation influence the performance of widespread understorey herbs in variable light environments. Journal of Ecology, 105(5), 1298-1308.
Williamson, G. B., & Ickes, K. (2002). Mast fruiting and ENSO cycles–does the cue betray a cause? Oikos, 97(3), 459-461.
Zwolak, R., Celebias, P., & Bogdziewicz, M. (2022). Global patterns in the predator satiation effect of masting: A meta-analysis. Proceedings of the National Academy of Sciences, 119(11), e2105655119.
Figure 1. Effects of drought stress on the mean species reproductive allocation (RA) (a) and its stability (b). For subordinate species (green), the effect of dominant removal is also shown. Results indicate positive or negative changes in RA when permanent (Low), inter-annual (Inter), or removal treatments are applied compared to the high water treatment with non-removed dominant species. Interaction effects (x) indicate the change in RA following the dominant removal and the drought stress compared to the high water treatment with dominant removal. The dashed line indicates zero change compared to controls and the grey interval indicates the region of practical equivalence (ROPE). Differences of RA from control treatments are represented by 89% high density intervals (HDI); filled dots in bars indicate non-overlap between ROPE and HDI, open dots and transparent bar indicate null hypothesis not rejected. R-squared (R2) intervals for regression models are shown.
Figure 2. Interspecific synchronisation in reproductive allocation between subordinate and all species (including dominant species) in the community under drought stress and dominant species removal treatments. Net shows species synchronisation in flowering under high water treatment with non-removed dominant species. See Fig. 1 for more information.
Figure 3. Pairwise species synchrony in reproductive allocation under drought stress and dominant removal treatments. The strength of the positive (a) and negative (b) Pearson correlations is determined by the width of the connection between species in the chord diagram (green,Carex elongata ; sea blue, Deschampsia cespitosa ; purple,Carex elata ; blue, Calamagrostis canescens ), water (blue, high - H; orange, interannual - I and pink, low - L) and removal treatment (no margins, control - C; dashed margins, dominant removal - R).
Figure 4. Intraspecific synchronisation in reproductive allocation in the community under drought stress and dominant removal treatments. Net shows species synchrony in flowering under the high-water treatment with non-removed dominant species. See Fig. 1 for more information.