References
Barringer, B. C., Koenig, W. D., & Knops, J. M. (2013).
Interrelationships among life-history traits in three California
oaks. Oecologia, 171, 129-139.
Bogdziewicz, M., Pesendorfer, M., Crone, E. E., Pérez‐Izquierdo, C., &
Bonal, R. (2020). Flowering synchrony drives reproductive success in a
wind‐pollinated tree. Ecology Letters, 23(12), 1820-1826.
Bogdziewicz, M., Chybicki, I., Szymkowiak, J., Ulaszewski, B., Burczyk,
J., Szarek-Łukaszewska, G., … & Żywiec, M. (2024). Relatives
reproduce in synchrony: kinship and individual condition shape
intraspecific variation in masting phenotype. Proceedings of the Royal
Society B, 291(2017), 20232732.
Catorci, A., Cesaretti, S., Gatti, R., & Tardella, F. M. (2012).
Trait-related flowering patterns in submediterranean mountain
meadows. Plant Ecology, 213, 1315-1328.
Chaloupecká, E., & Lepš, J. (2004). Equivalence of competitor effects
and tradeoff between vegetative multiplication and generative
reproduction: case study with Lychnis flos-cuculi andMyosotis nemorosa . Flora-Morphology, Distribution, Functional
Ecology of Plants, 199(2), 157-167.
Crone, E. E., Miller, E., & Sala, A. (2009). How do plants know when
other plants are flowering? Resource depletion, pollen limitation and
mast‐seeding in a perennial wildflower. Ecology Letters, 12(11),
1119-1126.
De Kort, H., Panis, B., Helsen, K., Douzet, R., Janssens, S. B., &
Honnay, O. (2020). Pre‐adaptation to climate change through
topography‐driven phenotypic plasticity. Journal of Ecology, 108(4),
1465-1474.
Doak, D. F., Bigger, D., Harding, E. K., Marvier, M. A., O’malley, R.
E., & Thomson, D. (1998). The statistical inevitability of
stability-diversity relationships in community ecology. The American
Naturalist, 151(3), 264-276.
Douda, J., Doudová, J., Holeštová, A., Boublík, K., Havrdová, A., &
Slezák, M. (2021). Interplay of above‐and belowground resource
limitations: a competition–facilitation shift maintains species
coexistence. Oikos, 130(12), 2122-2135.
Douda, J., Doudová, J., Hulík, J., Havrdová, A., & Boublík, K. (2018).
Reduced competition enhances community temporal stability under
conditions of increasing environmental stress. Ecology, 99(10),
2207-2216.
Douda, J., Doudová-Kochánková, J., Boublík, K., & Drašnarová, A.
(2012). Plant species coexistence at local scale in temperate swamp
forest: test of habitat heterogeneity hypothesis. Oecologia, 169,
523-534.
Doudová, J., & Douda, J. (2020). Along with intraspecific functional
trait variation, individual performance is key to resolving community
assembly processes. Functional Ecology, 34(11), 2362-2374.
Dybzinski, R., & Tilman, D. (2007). Resource use patterns predict
long-term outcomes of plant competition for nutrients and light. The
American Naturalist, 170(3), 305-318.
Eriksson, O. (1997). Colonization dynamics and relative abundance of
three plant species (Antennaria dioica , Hieracium
pilosella and Hypochoeris maculata ) in dry semi‐natural
grasslands. Ecography, 20(6), 559-568.
Fernández-Martínez, M., Pearse, I., Sardans, J., Sayol, F., Koenig, W.
D., LaMontagne, J. M., … & Janssens, I. A. (2019). Nutrient scarcity
as a selective pressure for mast seeding. Nature Plants, 5(12),
1222-1228.
Fujita, Y., Venterink, H. O., Van Bodegom, P. M., Douma, J. C., Heil, G.
W., Hölzel, N., … & Wassen, M. J. (2014). Low investment in sexual
reproduction threatens plants adapted to phosphorus
limitation. Nature, 505(7481), 82-86.
Grime, J. P., & Hunt, R. (1975). Relative growth-rate: its range and
adaptive significance in a local flora. Journal of Ecology, 393-422.
Gross, N., Kunstler, G., Liancourt, P., De Bello, F., Suding, K. N., &
Lavorel, S. (2009). Linking individual response to biotic interactions
with community structure: a trait‐based framework. Functional
Ecology, 23(6), 1167-1178.
Hacket‐Pain, A. J., Ascoli, D., Vacchiano, G., Biondi, F., Cavin, L.,
Conedera, M., … & Zang, C. S. (2018). Climatically controlled
reproduction drives interannual growth variability in a temperate tree
species. Ecology Letters, 21(12), 1833-1844.
Han, Q., Kabeya, D., Iio, A., Inagaki, Y., & Kakubari, Y. (2014).
Nitrogen storage dynamics are affected by masting events in Fagus
crenata. Oecologia, 174, 679-687.
Herben, T., Šerá, B., & Klimešová, J. (2015). Clonal growth and sexual
reproduction: tradeoffs and environmental constraints. Oikos, 124(4),
469-476.
Hulík, J., & Douda, J. (2017). Germination strategies of two dominantCarex species in a swamp alder forest: implications for
restoration. Biologia, 72(4), 370-377.
Isagi, Y., Sugimura, K., Sumida, A., & Ito, H. (1997). How does masting
happen and synchronize? Journal of Theoretical Biology, 187(2), 231-239.
Johnson, A. J., Moore, K. A., & Orth, R. J. (2017). The influence of
resource availability on flowering intensity in Zostera marina (L.). Journal of Experimental Marine Biology and Ecology, 490, 13-22.
Keddy, P. A. (2010). Wetland ecology: principles and conservation.
Cambridge university press.
Kelly, D., and V. L. Sork. 2002. Mast Seeding in Perennial Plants: Why,
How, Where? Annual Review of Ecology and Systematics 33: 427–447.
Kelly, D., Hart, D. E., & Allen, R. B. (2001). Evaluating the wind
pollination benefits of mast seeding. Ecology, 82(1), 117-126.
Kettenring, K. M., McCormick, M. K., Baron, H. M., & Whigham, D. F.
(2011). Mechanisms of Phragmites australis invasion: feedbacks among
genetic diversity, nutrients, and sexual reproduction. Journal of
Applied Ecology, 48(5), 1305-1313.
Klebs (1904). Probleme der Entwicklung. I-III Biol. Zentralbl. Bdl. 24.
Kleunen, M. V., Fischer, M., & Schmid, B. (2002). Experimental
life‐history evolution: selection on the allocation to sexual
reproduction and its plasticity in a clonal plant. Evolution, 56(11),
2168-2177.
Liancourt, P., Callaway, R. M., & Michalet, R. (2005). Stress tolerance
and competitive‐response ability determine the outcome of biotic
interactions. Ecology, 86(6), 1611-1618.
Makowski, D., Ben-Shachar, M. S., & Lüdecke, D. (2019). bayestestR:
Describing effects and their uncertainty, existence and significance
within the Bayesian framework. Journal of Open Source Software, 4(40),
1541.
Mariotte, P., Vandenberghe, C., Kardol, P., Hagedorn, F., & Buttler, A.
(2013). Subordinate plant species enhance community resistance against
drought in semi‐natural grasslands. Journal of Ecology, 101(3), 763-773.
Martínková, J., Šmilauer, P., & Mihulka, S. (2002). Phenological
pattern of grassland species: relation to the ecological and
morphological traits. Flora-Morphology, Distribution, Functional Ecology
of Plants, 197(4), 290-302.
Miyazaki, Y., Maruyama, Y., Chiba, Y., Kobayashi, M. J., Joseph, B.,
Shimizu, K. K., … & Satake, A. (2014). Nitrogen as a key regulator of
flowering in Fagus crenata: understanding the physiological mechanism of
masting by gene expression analysis. Ecology letters, 17(10), 1299-1309.
Monks, A., Monks, J. M., & Tanentzap, A. J. (2016). Resource limitation
underlying multiple masting models makes mast seeding sensitive to
future climate change. New Phytologist, 210(2), 419-430.
Montesinos, D., P. Garcia-Fayos & M. Verdu. 2012. Masting uncoupling:
mast seeding does not follow all mast flowering episodes in a dioecious
juniper tree. Oikos 121: 1725–1736.
Nilsson, S. G., & Wastljung, U. (1987). Seed predation and
cross‐pollination in mast‐seeding beech (Fagus sylvatica )
patches. Ecology, 68(2), 260-265.
Pearse, I. S., Koenig, W. D., & Kelly, D. (2016). Mechanisms of mast
seeding: resources, weather, cues, and selection. New
Phytologist, 212(3), 546-562.
Pesendorfer, M. B., Ascoli, D., Bogdziewicz, M., Hacket-Pain, A.,
Pearse, I. S., & Vacchiano, G. (2021). The ecology and evolution of
synchronized reproduction in long-lived plants. Philosophical
Transactions of the Royal Society B, 376(1839), 20200369.
Pulido, F., Moreno, G., García, E., Obrador, J. J., Bonal, R., & Díaz,
M. (2014). Resource manipulation reveals flexible allocation rules to
growth and reproduction in a Mediterranean evergreen oak. Journal of
Plant Ecology, 7(1), 77-85.
R Core Team (2024). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.
Reekie, E. G., & Bazzaz, F. A. (1987). Reproductive effort in plants.
1. Carbon allocation to reproduction. The American Naturalist, 129(6),
876-896.
Sack, L. (2004). Responses of temperate woody seedlings to shade and
drought: do trade‐offs limit potential niche
differentiation?. Oikos, 107(1), 110-127.
Sala, A., Hopping, K., McIntire, E. J., Delzon, S., & Crone, E. E.
(2012). Masting in whitebark pine (Pinus albicaulis) depletes stored
nutrients. New Phytologist, 196(1), 189-199.
Santos‐del‐Blanco, L., Bonser, S. P., Valladares, F., Chambel, M. R., &
Climent, J. (2013). Plasticity in reproduction and growth among 52
range‐wide populations of a M editerranean conifer: adaptive responses
to environmental stress. Journal of Evolutionary Biology, 26(9),
1912-1924.
Satake, A., & Iwasa, Y. O. H. (2000). Pollen coupling of forest trees:
forming synchronized and periodic reproduction out of chaos. Journal of
Theoretical Biology, 203(2), 63-84.
Schoen, D. J., & Dubuc, M. (1990). The evolution of inflorescence size
and number: a gamete-packaging strategy in plants. The American
Naturalist, 135(6), 841-857.
Silvertown, J. W. (1980). The evolutionary ecology of mast seeding in
trees. Biological Journal of the Linnean Society, 14(2), 235-250.
Smaill, S. J., Clinton, P. W., Allen, R. B., & Davis, M. R. (2011).
Climate cues and resources interact to determine seed production by a
masting species. Journal of Ecology, 99(3), 870-877.
Stenström, A. I. S. J., & Jónsdóttir, I. S. (1997). Responses of the
clonal sedge, Carex bigelowii , to two seasons of simulated
climate change. Global Change Biology, 3(S1), 89-96.
Sun, S., & Frelich, L. E. (2011). Flowering phenology and height growth
pattern are associated with maximum plant height, relative growth rate
and stem tissue mass density in herbaceous grassland species. Journal of
Ecology, 99(4), 991-1000.
Thompson, F. L., & Eckert, C. G. (2004). Trade‐offs between sexual and
clonal reproduction in an aquatic plant: experimental manipulations vs.
phenotypic correlations. Journal of Evolutionary Biology, 17(3),
581-592.
Tilman, D., & Pacala, S. (1993). The Maintenance of Species Richness in
Plant Communities. In R. E. Ricklefs, & D. Schluter (Eds.), Species
Diversity in Ecological Communities: Historical and Geographical
Perspectives (pp. 13-25). Chicago, IL: University of Chicago Press.
Tonnabel, J., David, P., & Pannell, J. R. (2017). Sex-specific
strategies of resource allocation in response to competition for light
in a dioecious plant. Oecologia, 185, 675-686.
van Lent, F., Verschuure, J. M., & van Veghel, M. L. (1995).
Comparative study on populations of Zostera marina L.(eelgrass):
in situ nitrogen enrichment and light manipulation. Journal of
Experimental Marine Biology and Ecology, 185(1), 55-76.
Westerband, A. C., & Horvitz, C. C. (2017). Early life conditions and
precipitation influence the performance of widespread understorey herbs
in variable light environments. Journal of Ecology, 105(5), 1298-1308.
Williamson, G. B., & Ickes, K. (2002). Mast fruiting and ENSO
cycles–does the cue betray a cause? Oikos, 97(3), 459-461.
Zwolak, R., Celebias, P., & Bogdziewicz, M. (2022). Global patterns in
the predator satiation effect of masting: A meta-analysis. Proceedings
of the National Academy of Sciences, 119(11), e2105655119.
Figure 1. Effects of drought stress on the mean species
reproductive allocation (RA) (a) and its stability (b). For subordinate
species (green), the effect of dominant removal is also shown. Results
indicate positive or negative changes in RA when permanent (Low),
inter-annual (Inter), or removal treatments are applied compared to the
high water treatment with non-removed dominant species. Interaction
effects (x) indicate the change in RA following the dominant removal and
the drought stress compared to the high water treatment with dominant
removal. The dashed line indicates zero change compared to controls and
the grey interval indicates the region of practical equivalence (ROPE).
Differences of RA from control treatments are represented by 89% high
density intervals (HDI); filled dots in bars indicate non-overlap
between ROPE and HDI, open dots and transparent bar indicate null
hypothesis not rejected. R-squared (R2) intervals for
regression models are shown.
Figure 2. Interspecific synchronisation in reproductive
allocation between subordinate and all species (including dominant
species) in the community under drought stress and dominant species
removal treatments. Net shows species synchronisation in flowering under
high water treatment with non-removed dominant species. See Fig. 1 for
more information.
Figure 3. Pairwise species synchrony in reproductive allocation
under drought stress and dominant removal treatments. The strength of
the positive (a) and negative (b) Pearson correlations is determined by
the width of the connection between species in the chord diagram (green,Carex elongata ; sea blue, Deschampsia cespitosa ; purple,Carex elata ; blue, Calamagrostis canescens ), water (blue,
high - H; orange, interannual - I and pink, low - L) and removal
treatment (no margins, control - C; dashed margins, dominant removal -
R).
Figure 4. Intraspecific synchronisation in reproductive
allocation in the community under drought stress and dominant removal
treatments. Net shows species synchrony in flowering under the
high-water treatment with non-removed dominant species. See Fig. 1 for
more information.