Reference

  1. Stupp, R., Wong, E. T., Kanner, A. A., Steinberg, D., Engelhdard, H., Kirson, E. D., et al. (2012). NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur. J. Cancer. 48, 2192–2012. doi: 10.1016/j.ejca.2012.04.011.
  2. Stupp, R. et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318, 2306–2316 (2017).
  3. MUN E J, BABIKER H M, WEINBERG U, et al. Tumor-treating fields: a fourth modality in cancer treatment [J]. Clinical Cancer Research, 2018, 24(2): 266-275.
  4. Kanner, A. A., Wong, E. T., Villano, J. L., and Ram, Z. (2014). Post hoc analyses of intention-to-treat population in phase III comparison of NovoTFF-100A system versus physician’s choice chemotherapy. Semin. Oncol. 41, S25–S34. doi: 10.1053/j.seminoncol.2014.09.008.
  5. Kirson, E. D., Dbalý, V., Tovarys, F., Vymazal, J., Soustiel, J. F., Itzhaki, A., et al. (2007). Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc. Nat. Acad. Sci. 104, 10152–10157. doi: 10.1073/pnas.0702916104.
  6. Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma A Randomized Clinical Trial.
  7. Miranda, P. C., Mekonnen, A., Salvador, R., and Basser, P. J. (2014). Predicting the electric field distribution in the brain for the treatment of glioblastoma. Phys. Med. Biol. 59, 4137–4147. doi: 10.1088/0031-9155/59/15/4137.
  8. Killock, D. TTFields improve survival. Nat Rev Clin Oncol 15, 136 (2018). https://doi.org/10.1038/nrclinonc.2018.2.
  9. Lok, E., Wong, E.T., Sajo, E. (2016). Computer Simulation of Tumor Treating Fields. In: Wong, E. (eds) Alternating Electric Fields Therapy in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-30576-9_4.
  10. Miranda, P. C., Mekonnen, A., Salvador, R., and Basser, P. J. (2014). Predicting the electric field distribution in the brain for the treatment of glioblastoma. Phys. Med. Biol. 59, 4137–4147. doi: 10.1088/0031-9155/59/15/4137.
  11. Wenger, C., Salvador, R., Basser, P. J., and Miranda, P. C. (2015). The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: a computational study. Phys. Med. Biol. 60, 7339–7357. doi: 10.1088/0031-9155/60/18/7339.
  12. Gentilal, Nichal et al. “Temperature and Impedance Variations During Tumor Treating Fields (TTFields) Treatment.” Frontiers in human neuroscience 16 (2022): 931818. Print.
  13. L. Grajales and F. C. Lee, ”Control system design and small-signal analysis of a phase-shift-controlled series-resonant inverter for induction heating,” Proceedings of PESC ’95 - Power Electronics Specialist Conference, Atlanta, GA, USA, 1995, pp. 450-456 vol.1, doi: 10.1109/PESC.1995.474849.
  14. W. Reeve, “DC power system design for telecommunications,” in IEEE Telecommunications Handbook Series. Hoboken, NJ, USA: Wiley, 2006.
  15. H. Radwan, M. A. Sayed, T. Takeshita, A. A. Elbaset and G. Shabib, ”A Novel Single- Stage High-Frequency Boost Inverter Cascaded by Rectifier-Inverter System for PV Grid-Tie Applications,” 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan, 2018, pp. 3945-3951, doi: 10.23919/IPEC.2018.8507412.
  16. M. A. Sayed, K. Suzuki, T. Takeshita and W. Kitagawa, ”Soft-Switching PWM Technique for Grid-Tie Isolated Bidirectional DC–AC Converter With SiC Device,” in IEEE Transactions on Industry Applications, vol. 53, no. 6, pp. 5602-5614, Nov.-Dec. 2017, doi: 10.1109/TIA.2017.2731738.
  17. X. Hu, Y. Zhang, X. Liu, Z. Yu, T. He and L. Mao, ”A Non-Isolated Step-up DC-AC Converter With Reduced Leakage Current for Grid-Connected Photovoltaic Systems,” in IEEE Access, vol. 8, pp. 71907-71916, 2020, doi: 10.1109/ACCESS.2020.2986605.
  18. B. Zhang, P. Yang, Q. Ge, X. Wang and Y. Li, ”A New High Output Frequency Multilevel Inverter Topology of Traction Converter for Superspeed Maglev Train,” 2021 13th International Symposium on Linear Drives for Industry Applications (LDIA), Wuhan, China, 2021, pp. 1-5, doi: 10.1109/LDIA49489.2021.9505946.
  19. W. Song, S. Jiao, Y. W. Li, J. Wang and J. Huang, ”High-Frequency Harmonic Resonance Suppression in High-Speed Railway Through Single-Phase Traction Converter With LCL Filter,” in IEEE Transactions on Transportation Electrification, vol. 2, no. 3, pp. 347-356, Sept. 2016, doi: 10.1109/TTE.2016.2584921.
  20. E. Rasool and M. Darwish, ”High frequency inverter circuit for UPS systems,” 2012 47th International Universities Power Engineering Conference (UPEC), Uxbridge, UK, 2012, pp. 1-4, doi: 10.1109/UPEC.2012.6398602.
  21. A. T. L. Lee, W. Jin, S. -C. Tan and S. Y. Hui, ”Buck-Boost Single-Inductor Multiple-Output High-Frequency Inverters for Medium-Power Wireless Power Transfer,” in IEEE Transactions on Power Electronics, vol. 34, no. 4, pp. 3457-3473, April 2019, doi: 10.1109/TPEL.2018.2855678.
  22. F. M. Ibanez, ”Bidirectional Series Resonant DC/AC Converter for Energy Storage Systems,” in IEEE Transactions on Power Electronics, vol. 34, no. 4, pp. 3429-3444, April 2019, doi: 10.1109/TPEL.2018.2854924.
  23. K. Kanathipan and J. Lam, ”An Electrolytic Capacitor-Less PV Micro-Inverter Based on CLL Resonant Conversion With a Power Control Scheme Using Resonant Circuit Voltage Control Loops,” in CPSS Transactions on Power Electronics and Applications, vol. 7, no. 2, pp. 139-149, June 2022, doi: 10.24295/CPSSTPEA.2022.00013.
  24. A. Ray and K. Rajashekara, ”Design and Evaluation of a High Current Gain Resonant Inverter for Subsea Electrical Heating,” in IEEE Transactions on Industry Applications, vol. 58, no. 4, pp. 5093-5103, July-Aug. 2022, doi: 10.1109/TIA.2022.3172392.
  25. Chien-Ming Wang and Guan-Chyun Hsieh, ”A series-resonant DC/AC inverter for impedance-load drives,” in IEEE Transactions on Power Electronics, vol. 16, no. 3, pp. 325-335, May 2001, doi: 10.1109/63.923764.
  26. X. Li and A. K. S. Bhat, ”A Utility-Interfaced Phase-Modulated High-Frequency Isolated Dual LCL DC/AC Converter,” in IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1008-1019, Feb. 2012, doi: 10.1109/TIE.2011.2158044.
  27. A. Blinov et al., ”High Gain DC–AC High-Frequency Link Inverter With Improved Quasi-Resonant Modulation,” in IEEE Transactions on Industrial Electronics, vol. 69, no. 2, pp. 1465-1476, Feb. 2022, doi: 10.1109/TIE.2021.3060657.
  28. N. Kummari and S. Chattopadhyay, ”Three-Legged High-Gain Phase-Modulated DC–AC Converter for Mitigation of Device Capacitance Induced Ringing Voltage,” in IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 1306-1321, Feb. 2020, doi: 10.1109/TPEL.2019.2918737.
  29. N. Kummari, S. Chakraborty, and S. Chattopadhyay, “An isolated highfrequency link microinverter operated with secondary-side modulation for efficiency improvement,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2187–2200, Mar. 2018.
  30. H. Wu, Y. Jia, F. Yang, L. Zhu, and Y. Xing, “Two-Stage isolated bidirectional DC–AC converters with three-port converters and two DC buses,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 4, pp. 4428–4439, Dec. 2020.
  31. Instructions for Use for Unresectable MalignantPleural Mesothelioma. https://www.optunelua.com/pdfs/Optune-Lua-MPM-IFU.pdf
  32. Murphy, Janlyn, Mary Ellen Bowers, and Loretta Barron. “Optune®: Practical Nursing Applications.” Clinical journal of oncology nursing  20.5 (2016): 14–19. Print.
  33. Lang ST, Gan LS, McLennan C, Monchi O, Kelly JJP. Impact of Peritumoral Edema During Tumor Treatment Field Therapy: A Computational Modelling Study. IEEE Trans Biomed Eng. 2020 Dec;67(12):3327-3338. doi: 10.1109/TBME.2020.2983653. Epub 2020 Nov 19. PMID: 32286953.
  34. Stupp, Roger et al. “NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality.” European journal of cancer (Oxford, England : 1990) vol. 48,14 (2012): 2192-202. doi:10.1016/j.ejca.2012.04.011.
  35. H. Y. Lu, J. G. Zhu, and S. Y. R. Hui, “Experimental determination of stray capacitances in high frequency transformers,” IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1105–1112, Sep. 2003.
  36. C. W. T. McLyman, Transformer and Inductor Design Handbook, Fourth Edition. CRC Press, 2016.
  37. Yin,Shan,et al.”A 1-MHz GaN-Based LCLC Resonant Step-Up Converter With Air-Core Transformer for Satellite Electric Propulsion Application”.IEEE Transactions on Industrial Electronics,vol.69,2022,pp.11035-11045,https://doi.org/10.1109/TIE.2021.3121711.