References
Alabbad, Y., Yildirim, E., & Demir, I. (2023). A web-based analytical
urban flood damage and loss estimation framework. Environmental
Modelling & Software, 163, 105670.
https://doi.org/10.1016/j.envsoft.2023.105670
Alabbad, Y., Mount, J., Campbell, A. M., & Demir, I. (2024). A
web-based decision support framework for optimizing road network
accessibility and emergency facility allocation during
flooding. Urban Informatics , 3 (1), 10.
https://doi.org/10.1007/s44212-024-00040-0
Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015).
Agroecology and the design of climate change-resilient farming systems.Agronomy for Sustainable Development , 35 (3), 869–890.
https://doi.org/10.1007/s13593-015-0285-2
Baydaroğlu, Ö., Yeşilköy, S., & Demir, I. (2024). A Phenology-Dependent
Analysis for Identifying Key Drought Indicators for Crop Yield based on
Causal Inference and Information Theory. EarthArxiv, 7613.
https://doi.org/10.31223/X5GD8X
Beach, R. H., Zhen, C., Thomson, A., Rejesus, R. M., Sinha, P., Lentz,
A. W., Vedenov, D. V, & McCarl, B. A. (2010). Climate change
impacts on crop insurance . Doi: 10.22004/ag.econ.338292
Capone, R., Bilali, H. E., Debs, P., Cardone, G., & Driouech, N.
(2014). Food system sustainability and food security: connecting the
dots. Journal of Food Security, 2(1), 13-22. DOI:10.12691/jfs-2-1-2
Cikmaz, B. A., Yildirim, E., & Demir, I. (2023). Flood susceptibility
mapping using fuzzy analytical hierarchy process for Cedar Rapids,
Iowa. International journal of river basin management , 1-13. DOI:
10.1080/15715124.2023.2216936
Cogato, A., Meggio, F., De Antoni Migliorati, M., & Marinello, F.
(2019). Extreme weather events in agriculture: A systematic review.Sustainability , 11 (9), 2547.
https://doi.org/10.3390/su11092547
Fellman, B. (2023). Abrupt Agricultural Flash Drought: An Investigation
of Rapid Drought Development Across Vital Agricultural Zones of the
United States.
Field, C. B. (2012). Managing the risks of extreme events and
disasters to advance climate change adaptation: a special report of the
intergovernmental panel on climate change . Cambridge University Press.
Foster, T., Brozović, N., & Butler, A. P. (2015). Why well yield
matters for managing agricultural drought risk. Weather and
Climate Extremes , 10 , 11–19.
https://doi.org/10.1016/j.wace.2015.07.003
Fuchs, B., Umphlett, N., Timlin, M. S., Ryan, W., Doesken, N., Angel,
J., Kellner, O., Hillaker, H. J., Knapp, M., Lin, X., & others. (2012).From Too Much to Too Little: How the central U.S. drought of 2012
evolved out of one of the most devastating floods on record in 2011 .
Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., &
Wiltshire, A. (2010). Implications of climate change for agricultural
productivity in the early twenty-first century. Philosophical
Transactions of the Royal Society B: Biological Sciences ,365 (1554), 2973–2989.
https://doi.org/10.1098/rstb.2010.0158
Grassini, P., Specht, J. E., Tollenaar, M., Ciampitti, I., & Cassman,
K. G. (2015). High-yield maize–soybean cropping systems in the US
Corn Belt. In Crop physiology (pp. 17–41). Elsevier.
https://doi.org/10.1016/B978-0-12-417104-6.00002-9
Haile, G. G., Tang, Q., Hosseini-Moghari, S.-M., Liu, X., Gebremicael,
T. G., Leng, G., Kebede, A., Xu, X., & Yun, X. (2020). Projected
impacts of climate change on drought patterns over East Africa.Earth’s Future , 8 (7), e2020EF001502.
https://doi.org/10.1029/2020EF001502
Handmer, J., Honda, Y., Kundzewicz, Z. W., Arnell, N., Benito, G.,
Hatfield, J., Mohamed, I. F., Peduzzi, P., Wu, S., Sherstyukov, B., &
others. (2012). Changes in impacts of climate extremes: human systems
and ecosystems. Managing the Risks of Extreme Events and Disasters
to Advance Climate Change Adaptation Special Report of the
Intergovernmental Panel on Climate Change , 231–290.
10.1017/CBO9781139177245.007
Hobbins, M. T., Wood, A., McEvoy, D. J., Huntington, J. L., Morton, C.,
Anderson, M., & Hain, C. (2016). The evaporative demand drought index.
Part I: Linking drought evolution to variations in evaporative demand.Journal of Hydrometeorology , 17 (6), 1745–1761.
https://doi.org/10.1175/JHM-D-15-0121.1
Hoell, A., Parker, B.-A., Downey, M., Umphlett, N., Jencso, K., Akyuz,
F. A., Peck, D., Hadwen, T., Fuchs, B., Kluck, D., & others. (2020).
Lessons learned from the 2017 flash drought across the US Northern Great
Plains and Canadian Prairies. Bulletin of the American
Meteorological Society , 101 (12), E2171–E2185.
https://doi.org/10.1175/BAMS-D-19-0272.1
Hoerling, M., Eischeid, J., Kumar, A., Leung, R., Mariotti, A., Mo, K.,
Schubert, S., & Seager, R. (2014). Causes and predictability of the
2012 Great Plains drought. Bulletin of the American Meteorological
Society , 95 (2), 269–282.
https://doi.org/10.1175/BAMS-D-13-00055.1
Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop,
M., & Meinke, H. (2007). Adapting agriculture to climate change.Proceedings of the National Academy of Sciences , 104 (50),
19691–19696.
https://doi.org/10.1073/pnas.0701890104
Iowa Environmental Mesonet, Iowa State University Department of
Agronomy.
http://mesonet.agron.iastate.edu/
Islam, S. M. S., Islam, K. M. A., & Mullick, M. R. A. (2022). Drought
hot spot analysis using local indicators of spatial autocorrelation: An
experience from Bangladesh. Environmental Challenges , 6 ,
100410.
https://doi.org/10.1016/j.envc.2021.100410
Islam, S. M. S., Yesilköy, S., Baydarouglu, Ö., Yildirim, E., & Demir,
I. (2024). State-level multidimensional agricultural drought
susceptibility and risk assessment for agriculturally prominent areas.International Journal of River Basin Management , 1–18.
https://doi.org/10.1080/15715124.2024.2304546
Jin, Z., Zhuang, Q., Wang, J., Archontoulis, S. V, Zobel, Z., &
Kotamarthi, V. R. (2017). The combined and separate impacts of climate
extremes on the current and future U.S. rainfed maize and soybean
production under elevated CO2. Global Change Biology ,23 (7), 2687–2704.
https://doi.org/10.1111/gcb.13617
Juhasz, T., & Kornfield, J. (1978). The Crop Moisture Index: Unnatural
Response to Changes in Temperature. Journal of Applied Meteorology
and Climatology , 17 (12), 1864–1866.
https://doi.org/10.1175/1520-0450(1978)017<1864:TCMIUR>2.0.CO;2.
https://www.jstor.org/stable/26178623
Kang, Y., Khan, S., & Ma, X. (2009). Climate change impacts on crop
yield, crop water productivity and food security–A review.Progress in Natural Science , 19 (12), 1665–1674.
https://doi.org/10.1016/j.pnsc.2009.08.001
Kriegler, F. J. (1969). Preprocessing transformations and their effects
on multispectral recognition. Proceedings of the Sixth
International Symposium on Remote Sensing of Environment , 97–131.
Kukal, M. S., & Irmak, S. (2018). Climate-driven crop yield and yield
variability and climate change impacts on the U.S. Great Plains
agricultural production. Scientific Reports , 8 (1), 1–18.
https://doi.org/10.1038/s41598-018-21848-2
Kuwayama, Y., Thompson, A., Bernknopf, R., Zaitchik, B., & Vail, P.
(2019). Estimating the impact of drought on agriculture using the US
Drought Monitor. American Journal of Agricultural Economics ,101 (1), 193–210.
https://doi.org/10.1093/ajae/aay037
Laimighofer, J., & Laaha, G. (2022). How standard are standardized
drought indices? Uncertainty components for the SPI \&
SPEI case. Journal of Hydrology , 613 , 128385.
https://doi.org/10.1016/j.jhydrol.2022.128385
Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E., & Peng, B. (2019).
Excessive rainfall leads to maize yield loss of a comparable magnitude
to extreme drought in the United States. Global change biology, 25(7),
2325-2337. https://doi.org/10.1111/gcb.14628
Li, Z., & Demir, I. (2022). A comprehensive web-based system for flood
inundation map generation and comparative analysis based on height above
nearest drainage. Science of The Total Environment , 828, 154420.
Liang, X.-Z., Wu, Y., Chambers, R. G., Schmoldt, D. L., Gao, W., Liu,
C., Liu, Y.-A., Sun, C., & Kennedy, J. A. (2017). Determining climate
effects on U.S. total agricultural productivity. Proceedings of
the National Academy of Sciences , 114 (12), E2285–E2292.
https://doi.org/10.1073/pnas.1615922114
Lu, J., Carbone, G. J., Huang, X., Lackstrom, K., & Gao, P. (2020).
Mapping the sensitivity of agriculture to drought and estimating the
effect of irrigation in the United States, 1950–2016.Agricultural and Forest Meteorology , 292 , 108124.
https://doi.org/10.1016/j.agrformet.2020.108124
Ma, M., Ren, L., Yuan, F., Jiang, S., Liu, Y., Kong, H., & Gong, L.
(2014). A new standardized Palmer drought index for hydro-meteorological
use. Hydrological Processes , 28 (23), 5645–5661.
https://doi.org/10.1002/hyp.10063
Mahdi, S. S., Dhekale, B. S., Choudhury, S. R., Bangroo, S. A., &
Gupta, S. K. (2015). On the climate risks in crop production and
management in India: A review. Australian Journal of Crop
Science , 9 (7), 585–595.
https://search.informit.org/doi/10.3316/informit.357049125665359
Maisashvili, A., Fischer, B., & Bryant, H. (2023). Crop Insurance
Implications of Permanently Authorizing the Emergency Relief Program.Journal of Agricultural and Applied Economics , 55 (1),
171–193. DOI:
https://doi.org/10.1017/aae.2023.14
McEvoy, D. J., Huntington, J. L., Hobbins, M. T., Wood, A., Morton, C.,
Anderson, M., & Hain, C. (2016). The evaporative demand drought index.
Part II: CONUS-wide assessment against common drought indicators.Journal of Hydrometeorology , 17 (6), 1763–1779.
https://doi.org/10.1175/JHM-D-15-0122.1
McKee, T. B., Doesken, N. J., Kleist, J., & others. (1993). The
relationship of drought frequency and duration to time scales.Proceedings of the 8th Conference on Applied Climatology ,17 (22), 179–183.
Mishra, V., Aadhar, S., & Mahto, S. S. (2021). Anthropogenic warming
and intraseasonal summer monsoon variability amplify the risk of future
flash droughts in India. Npj Climate and Atmospheric Science ,4 (1), 1.
https://doi.org/10.1038/s41612-020-00158-3
Mount, J., Alabbad, Y., & Demir, I. (2019). Towards an integrated and
realtime wayfinding framework for flood events. In Proceedings of
the 2nd ACM SIGSPATIAL International Workshop on Advances on Resilient
and Intelligent Cities (pp. 33-36).
Mukherjee, S., Mishra, A., & Trenberth, K. E. (2018). Climate change
and drought: a perspective on drought indices. Current Climate
Change Reports , 4 , 145–163.
https://doi.org/10.1007/s40641-018-0098-x
Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B.,
Peltonen-Sainio, P., Rossi, F., Kozyra, J., & Micale, F. (2011).
Impacts and adaptation of European crop production systems to climate
change. European Journal of Agronomy , 34 (2), 96–112.
https://doi.org/10.1016/j.eja.2010.11.003
Palmer, W. C. (1965). Meteorological drought (Vol. 30). U.S.
Department of Commerce, Weather Bureau.
Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer,
G. (2004). Effects of climate change on global food production under
SRES emissions and socio-economic scenarios. Global Environmental
Change , 14 (1), 53–67.
https://doi.org/10.1016/j.gloenvcha.2003.10.008
Potop, V., Možn\‘y, M., & Soukup, J. (2012). Drought
evolution at various time scales in the lowland regions and their impact
on vegetable crops in the Czech Republic. Agricultural and Forest
Meteorology , 156 , 121–133.
https://doi.org/10.1016/j.agrformet.2012.01.002
Ramirez, C. E., Sermet, Y., Molkenthin, F., & Demir, I. (2022).
HydroLang: An open-source web-based programming framework for
hydrological sciences. Environmental Modelling & Software , 157,
105525.
Ray, R. L., Fares, A., & Risch, E. (2018). Effects of drought on crop
production and cropping areas in Texas. Agricultural &
Environmental Letters , 3 (1), 170037.
https://doi.org/10.2134/ael2017.11.0037
Raymond, C., Horton, R. M., Zscheischler, J., Martius, O., AghaKouchak,
A., Balch, J., Bowen, S. G., Camargo, S. J., Hess, J., Kornhuber, K., &
others. (2020). Understanding and managing connected extreme events.Nature Climate Change , 10 (7), 611–621.
https://doi.org/10.1038/s41558-020-0790-4
Ribeiro, A. F. S., Russo, A., Gouveia, C. M., Páscoa, P., & Pires, C.
A. L. (2019). Probabilistic modeling of the dependence between rainfed
crops and drought hazard. Natural Hazards and Earth System
Sciences , 19 (12), 2795–2809.
https://doi.org/10.5194/nhess-19-2795-2019, 2019
Savelli, E., Rusca, M., Cloke, H., & Di Baldassarre, G. (2022). Drought
and society: Scientific progress, blind spots, and future prospects.Wiley Interdisciplinary Reviews: Climate Change , 13 (3),
e761.
https://doi.org/10.1002/wcc.761
Sen, Z. (2015). Applied drought modeling, prediction, and
mitigation . Elsevier.
Sermet, Y., & Demir, I. (2022). GeospatialVR: A web-based virtual
reality framework for collaborative environmental simulations.Computers & Geosciences , 159, 105010.
https://doi.org/10.1016/j.cageo.2021.105010
Sit, M., Langel, R. J., Thompson, D., Cwiertny, D. M., & Demir, I.
(2021a). Web-based data analytics framework for well forecasting and
groundwater quality. Science of the Total
Environment , 761 , 144121.
https://doi.org/10.1016/j.scitotenv.2020.144121
Sit, M., Demiray, B., & Demir, I. (2021b). Short-term hourly streamflow
prediction with graph convolutional GRU networks. arXiv preprint
arXiv:2107.07039.
Sivakumar, M. V. K., & Stefanski, R. (2011). Climate change in South
Asia. Climate Change and Food Security in South Asia , 13–30.
https://doi.org/10.1007/978-90-481-9516-9_2
Smith, A. B. (2020). 2010–2019: A landmark decade of U.S.
billion-dollar weather and climate disasters. National Oceanic and
Atmospheric Administration .
Subedi, B., Poudel, A., & Aryal, S. (2023). The impact of climate
change on insect pest biology and ecology: Implications for pest
management strategies, crop production, and food security. Journal
of Agriculture and Food Research , 14 , 100733.
https://doi.org/10.1016/j.jafr.2023.100733
Tadele, Z. (2017). Raising crop productivity in Africa through
intensification. Agronomy , 7 (1), 22.
https://doi.org/10.3390/agronomy7010022
Tanir, T., Yildirim, E., Ferreira, C. M., & Demir, I. (2024). Social
vulnerability and climate risk assessment for agricultural communities
in the United States. Science of The Total Environment, 908, 168346.
DOI: 10.1016/j.scitotenv.2023.168346
Tian, F., Wu, J., Liu, L., Leng, S., Yang, J., Zhao, W., & Shen, Q.
(2019). Exceptional drought across Southeastern Australia caused by
extreme lack of precipitation and its impacts on NDVI and SIF in 2018.Remote Sensing , 12 (1), 54.
https://doi.org/10.3390/rs12010054
USDA. (2024). United States Department of Agriculture.
http://www.nass.usda.gov/Quick_Stats/
USDA. (2012). Agricultural Weather and Drought Update. U.S. Department
of Agriculture. 2024,
https://www.usda.gov/
media/blog/2012/07/26/ agricultural -weather-and-drought-update-72612
Vicente-Serrano, S. M., Beguer\’\ia, S., &
López-Moreno, J. I. (2010). A multiscalar drought index sensitive to
global warming: the standardized precipitation evapotranspiration index.Journal of Climate , 23 (7), 1696–1718.
https://doi.org/10.1175/2009JCLI2909.1
Vogel, E., Donat, M. G., Alexander, L. V, Meinshausen, M., Ray, D. K.,
Karoly, D., Meinshausen, N., & Frieler, K. (2019). The effects of
climate extremes on global agricultural yields. Environmental
Research Letters , 14 (5), 54010. DOI 10.1088/1748-9326/ab154b
Yeşilköy, S., Baydaroğlu, Ö., Singh, N., Sermet, Y., & Demir, I.
(2023). A contemporary systematic review of Cyberinfrastructure Systems
and Applications for Flood and Drought Data Analytics and Communication.
DOI:10.31223/X5937W
Yeşilköy, S., Baydaroğlu, Ö., & Demir, I. (2024). Is snow drought a
messenger for the upcoming severe drought period? A case study in the
upper Mississippi river basin. Atmospheric research, 309, 107553. DOI:
10.1016/j.atmosres.2024.107553
Yildirim, E., Just, C., & Demir, I. (2022). Flood risk assessment and
quantification at the community and property level in the State of Iowa.
International journal of disaster risk reduction, 77, 103106.
https://doi.org/10.1016/j.ijdrr.2022.103106
Yildirim, E., & Demir, I. (2022). Agricultural flood vulnerability
assessment and risk quantification in Iowa. Science of The Total
Environment, 826, 154165.
https://doi.org/10.1016/j.scitotenv.2022.154165
Yildirim, E., Alabbad, Y., & Demir, I. (2023). Non-structural flood
mitigation optimization at community scale: Middle Cedar Case
Study. Journal of environmental management , 346 , 119025.
DOI: 10.1016/j.jenvman.2023.119025
Zhang, T., Lin, X., & Sassenrath, G. F. (2015). Current irrigation
practices in the central United States reduce drought and extreme heat
impacts for maize and soybean, but not for wheat. Science of the
Total Environment , 508 , 331–342.
https://doi.org/10.1016/j.scitotenv.2014.12.004