Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Event-triggered distributed model predictive control of linear
systems with additional disturbances
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implemented along with developing a robust terminal set. The terminal set is purposefully designed to
maintain system stability in the presence of additive disturbances, achieved through a meticulously designed
triggering mechanism. Then it is imperative to discuss the stability of the resulting closed-loop system
and provide a proof process of the feasibility of the iterative optimization. Finally, the effectiveness of the
proposed algorithm is validated through simulation results, thereby confirming its efficacy.
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1 | INTRODUCTION

Model predictive control (MPC) is a highly effective control method that widely utilized in various industrial production
processes™, such as chemical processes?, multi-vehicle systems® as well as power network systems*=. With the increment of
system size and variable dimensions, the adoption of the central control strategy significantly impacts control performance,
thereby posing challenges in meeting the requirements of industrial processes. With advancements in communication technology
and computer science, distributed model predictive control (DMPC) is extensively explored as an alternative solution for
centralized control concerns®”®, By utilizing measurement values and neighboring operation information, subsystems can
efficiently solve optimization problems. Consequently, this leads to a reduction in the scale of the optimization problem, resulting
in a substantial enhancement of global control performance® %M.

In recent years, the applications of DMPC and the coordinated control of distributed systems have garnered considerable
attention. For addressing collision and obstacle avoidence problem in multiple linear second-order agents, a DMPC strategy is
proposed in2. By designing the terminal controller, it is ensured that the terminal set is positively invariant and satisfies collision
avoidance constraints and obstacle avoidance constraints. In''%, a collaborative strategy for DMPC is proposed for decomposing
the hierarchical structure. The subsystems are divided into different layers according to the strength of the couplings. In the
collaborative DMPC algorithm, the necessity for global communication is alleviated, as only intra-layer communication is
required. This effectively reduces the communication burden without significant performance degradation. A DMPC method
considering neighbouring optimization is implemented to effectively control the tension system in'#, The input and state
evolution information is considered in the optimization process, and thus a better control performance can be achieved. Then

Abbreviations: MPC, model predictive control; DMPC, Distributed model predictive control; OCP, optimal control problem.
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the DMPC algorithm is put through simulations to verify its efficacy. In'?, a fully DMPC method is adopted to guarantee the
safety of voltage and information of integrated hybrid energy systems. The local controllers are designed by considering the
different requirements of voltage quality for each microgrid. The Nash equilibrium is attained, and several simulations are
provided to demonstrate the designed algorithm. In'®, a serial DMPC approach is developed for connected automated vehicles.
The asymptotic local stability is analysed and some simulations provide clear evidence that the proposed strategy surpasses
traditional MPC in terms of performance. InZ, a DMPC algorithm for nonlinear systems with coupled constraints is introduced,
using the inexact distributed sequential quadratic programming (QP) framework for fully distributed execution and early QP
termination handling. The algorithm ensures recursive feasibility and stability, with simulations on multi-agent formation control
demonstrating its effectiveness compared to benchmarks. These methods provide an excellent research foundation for distributed
dynamic systems.

Note that external disturbances in real-world industrial production processes are inevitable. Consequently, several studies
have been conducted to address the robust performance of distributed systems, aiming to handle constraints, disturbances, and
uncertainties inherent in interconnected systems. In%, a DMPC strategy is formulated to control the systems with multiplicative
uncertainties. The local controller is updated sequentially to guarantee that the algorithm is feasible in the stochastic sense.
In?, the robust invariant regions of discrete-time systems are studied. The general framework of robust invariant regions is
established. Some constraints are also given to ensure the optimization process is feasible. The consensus problem based on
the robust DMPC for multi-agent systems affected by external interference is presented?’. A consensus algorithm based on
the nominal system is designed and the expected state and the actual state are limited in an invariant set. Thus, the robustness
and feasibility of controllers are guaranteed. In!, a robust DMPC formula is developed to stabilize a disturbed linear system.
The independent terminal cost and local robust terminal region are designed. The approach employs a set membership degree
approach to ensure compliance with coupling constraints in the presence of disturbances.

It is essential to highlight that the majority of the aforementioned research on distributed MPC algorithms relies on the
time-triggered mechanism. This mechanism entails that each subsystem synchronously addresses optimization problems and
carries out operational actions within each sampling period. However, this update and control strategy fails to fully account for
the operational information of subsystems, which may impose great communication pressure?#232%_Therefore, there has been
growing interest in the utilization of event-triggered strategies, which have been demonstrated to be highly effective in mitigating
communication pressure. The event-triggered method proves to be more efficient in utilizing communication resources compared
to the time-triggered mechanism while achieving good system performance. In“>, an event-triggered DMPC method is put
forward, and conditions for triggering are determined through the system stability analaysis. Consequently, the local controllers
collaborate autonomously to address optimization problems and achieve synchronization among themselves. This collaborative
effort leads to a reduction in communication traffic and fewer controller updates. The scheme of event-triggered DMPC for a
multi-agent system is presented in2®. The asynchronous coordination is realized by exchanging information only at the specific
triggering time. The dynamic variable, incorporating neighbor information, is utilized to design triggering conditions. The control
performance can be ensured by implementing rigorous theoretical conditions. A threshold-based event-triggered DMPC method
is developed for effective traffic signal control in”Z, Through the investigation of the literature, only a few research works consider
the system couplings and additional disturbance in event-triggered control of distributed systems. Developing an event-triggered
mechanism for distributed systems can be quite challenging, mainly due to the existence of disturbances and system dynamic
couplings. Moreover, asynchronous communication presents difficulties in maintaining the global stability of control systems.

Inspired by the aforementioned observations, the event-triggered DMPC problem of dynamic coupling systems is studied
in this paper. The primary challenge is to guarantee the practicality of the event-triggered DMPC method while maintaining
the stability of the whole control system, even under bounded disturbances and couplings. The following are the primary
contributions of this study: (i) A DMPC optimization problem is formulated under an event-triggered mechanism, utilizing the
introduced nominal system. The inclusion of certain constraints is developed to guarantee the proposed algorithm is feasible. (ii)
Taking into account state couplings and additional disturbances, the triggering conditions are determined by comparing the error
between current and predicted states. Building upon the designed triggering mechanism, an event-triggered distributed strategy is
proposed and a dual-mode MPC method strategy is implemented to effectively conserve communication resources while system
performance can be guaranteed. (iii) The feasibility of the developed DMPC algorithm is ensured by establishing sufficient
conditions. Additionally, a thorough analysis of the stability and robustness is also conducted. The analysis demonstrates that the
system state can eventually converge to robust invariant regions.

The content of this article is structured as follows: The full text consists of six chapters, with section [2] describing the
investigated problem and section [3|developing a DMPC framework and the event-triggering mechanism. In section 4] The focus
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is on ensuring the stability of the closed-loop system and determining the feasibility of the optimization algorithm. In section [5]
some simulations are conducted to validate the effectiveness of the proposed control strategy. The conclusions are drawn in
section

Notation: The mathematical symbol R” represents an Euclidean space with n dimensions. N denotes a set with N integers.
|[x|| denotes the 2-norm for a vector x, defined as ||x|| = vxTx, and ||x||3, represents x"?x. A(P) represents minimum eigenvalue
and \(P) represents the maximum eigenvalue of matrix P.

2 | PROBLEM DESCRIPTION AND PRELIMINARIES

A discrete-time linear system consisting of N interdependent subsystems is the focus of this paper. Generally, the dynamics of
the i-th subsystem are described as

xi(k + 1) = Ayxi(k) + Bju;(k) + ZAijxj(k) +d;(k) ()
JEN;

where x;(k) € R" and u;(k) € R™ represent the states and control inputs of subsystem i, i € N, respectively; x;(k) € R is the
state vector of neighbouring subsystem j, j € N;, where N; is the set of neighbours interacting with subsystem i; A; € R™"*",
B; € R"*™ and A;; € R™*"% are constant matrices. The additional disturbances d;(k) are bounded by ||d;(k)|| < d..

Define x(k) = [x](k), . . ., xy(K)]T, u(k) = [ul(k), ..., up(k)]" and d(k) = [d] (k), . ..,d}(k)]". The overall system (T)) can be
given as

x(k + 1) = Ax(k) + Bu(k) + d(k) 2)

where x(k) € R", u(k) € R™ are the states and the input of the whole system; the upper bound of disturbances d(k) can be defined
as ||dk)|| < Hgl/ d = (d1,d>, . .., dy); the matrix B = diag (By, ..., By), and the system matrix A is a block matrix consisting
of N x N blocks.

Throughout this paper, we adopt the following assumptions.

Assumption 1. For the system described in , if (A;;, B;) is stabilized, then a state feedback gain K; can be found such that
A, = Aji + BiK;,Vi € N is Schur and A, = A + BK is Schur, where K = diag(K{, . .., Ky).

Assumption 2. Given the matrices H; > 0 and C; > 0, there exists a positive definite matrix P; such that Ag:’PiACi -P; <
— (M + KICK;) for the i-th subsystem. Let # = diag (M1, . .., Hy), C = diag (Ci, . ..,Cy) and P = diag (P, ..., Py), AT PA. —
P < — (M +KTCK) can be satisfied for the whole system.

Assumption 3. It is assumed that every subsystem can communicate ideally without delay.

Lemma 1. Given the fulfillment of Assumptions [[[3|and weight matrices H; and C; with proper dimensions. Then, there exists a
constant o > 0 such that (o) = {x eR": x|l < CT} remains invariant for the nominal system of (2), namely, for system
under the control input u(k) = Kx(k) when the additive disturbances d(k) = 0.

Proof. For the i-th subsystem, V;(x;(k)) = ||x,~(k)|\,%i is a Lyapunov function candidate. The stage cost is defined as J;;(k) =
[[xi(k)[|3,, + l|ui(k)||Z,. Subsequently, the property of Vi(x;(k)) is exhibited as follows:

N
D Vixitk + P + 1) = Vixitk + P)) + Ju(k + P))

i=1

N
= Z {xI(k+P + DPxi(k + P + 1) —x] (k + P)Pxi(k + P) + ||x;(k + P)||3, + |[uik + P)||g. }
i=1
=(Acx(k + P)) P(Acx(k + P)) — (x(k + P)) P(x(k + P)) + ||x(k + P)||3, + [|uk + P)[|2
=x"(k+ P)YATPA. — P+ H + K'CK)x(k + P) 3)
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Consequently, the dynamics of the whole system can be stabilized by distributed controllers separately when states are in the
invariant set {2(o). This implies that all trajectories will converge to the origin and stay inside if the states of the closed-loop
system start within 2(c). Additionally, for all x; € £2,(0;), there is a constant o; > 0 that the state can converge to zero under the
input u;(k) = Kix;(k). The proof of Lemmal [I]is now completed. O]

3 | EVENT-TRIGGERED MECHANISM AND DMPC STRATEGY

In this section, the distributed optimal control problem (OCP) utilizing an event-triggered mechanism is presented. Moreover,
triggering conditions involving state couplings and disturbances are provided, and the algorithm of event-triggered DMPC is
also developed.

The dynamics of system (TJ) ignoring the disturbance is introduced as follows:

Xi(k+1) = AXi(k) + Biiti(k) + Y Ay¥;(k) (4)
JEN;

From equation (), the global system is defined as

¥k + 1) = Ax(k) + Bit(k) (5)
where X(k) = [XT(k), ..., X5y (01T, i(k) = [i#] (k), . .., i} (k)]T. Furthermore, the cost function of the i-th subsystem can be written
as:
P
TiG(k), (k) = (|[¥ik + qlk)|[3, + [k + gl |3,) + 1%k + Pl 3, (6)
q=0

where H; and C; are positive definite matrices; P; is chosen to satisfy Lemma [I] In this paper, we define the stage cost
Jig(k) = ZZID:_OI(H)“C[(I( +qlk)||3,, + ||it:(k + glk)||2 ) and the terminal cost J; = ||X;(k + Plk)||3,, respectively.

The introduction of nominal systems aims to address the challenge of obtaining accurate states due to unknown disturbances.
Thus, the use of nominal states is necessary for designing the event-triggered DMPC condition, as unknown disturbances can
make it difficult to obtain accurate states. Each local controller is considered to solve a highly demanding optimization problem
in a finite time, and triggering conditions are designed with consideration for the uncertainties and performance of systems
within the DMPC framework. When these conditions are fulfilled, the optimization problem is solved by local controllers,
with the state information subsequently transmitted to neighbouring subsystems to get coordination between controllers. The
optimization control problem is defined in ({7):

~ min J (x,(tk) i; (tk)) (7a)
i (klty ), -+ i (k+P—-1lt
subject to:
¥k + g+ 1) = Ayxi(k + gltt) + Biity(k + qIt}) + ZA,, “(k+ql(t)),q=0,....,P-1 (7b)
JEN;
! KRO;
SN (P |tk + rle) =ik 4 i) < L Sha=l Pl (7c)
r=0
||%:(k + P — 1|zlk)||p,. < (1= kK)o; (7d)
Xi(klth) = x;(2h), k = £, (7e)
%k + Plth) € Qo) (7

ik + qlth) € U; (72)
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where 7 denotes the triggering instant of subsystem i and 7, is the last triggering instant. /(#) is the triggering time of system j
satisfying o/(t}) = maxpez{¢/ (1)l (1)) < £, j € N;}, which is adopted to describe the triggering instant latest to #; of subsystem
Jj and the sampling time k € Z with Z being the integer set. )%}*((pf (1)) represents an optimal state of neighbouring subsystem at
the triggering instant ¢/(z;). And 7; = A;’i_r_lA,-j, the parameter vy and x are two constants satisfying 0 <y <1 and 0 < k < 1, and
np = %%(IN,-I is defined to describe the maximum number of neighbouring subsystems interacting with subsystem i.

Remark 1. The dynamics of subsystem i need its neighbouring information due to state coupling. However, The triggering
instants of subsystem i and the neighbouring subsystem j are not synchronous in the event-triggered framework. It implies that
the state of neighbouring subsystem X;(#;) cannot be obtaiqed directly. Then the state X} (¢/(#,)), which is an optimal state of
neighbouring subsystem at the triggering instant closest to 7, is introduced.

For each subsystem i, the optimal control input is determined by solving the OCP (7)) at the triggering time . To maintain
the stability of the distributed system and alleviate the calculation and communication burden, the control strategy operates
in dual modes. Lemmaindicates that the control input u;(k) = K;x;(k) can be used to stabilize subsystem i when x; € Q;(0;).
Furthermore, outside of the terminal region, the optimal control input u (}) acts on the local subsystem i. If states of subsystems
enter the terminal region, i.e., x; € ;(0;), u;(k) = K;x;(k) will be used.

The optimal control input is defined as it} (k + glr}) and the corresponding optimal state is X} (k + glz}).

According to the dual-mode control method mentioned above, a feasible control input of the i-th subsystem at k is constructed
as:

ik +qlo'(k), gqe{0,...,P-2}

_ ®)
Kix;(k + q'k), q= P-1

u;(k + glk) = {
where K;x;(k + glk) serves as the terminal control law and ¢i(k) represents the triggering instant of system i, satisfying
@' (k) = maxgez{ ¢ (k) (k) < k}. As shown in the formula (8)), the optimal control inputs from the last time will be adopted at
the non-triggered instant as the feasible inputs to achieve iterative optimization of local MPC. Then the feasible state can be
approximately defined by the optimal state at the last triggering instant. The feasible initial state x;(klk) and the feasible state
Xi(k + glk) can be gained using equation (8.

For any g = 1, ..., P, X;(k + glk) can be obtained as:

Xitk + g + 1lk) = A;ix;(k + glk) + Bj;u;(k + glk) + ZAij)qu (k+ q|(pi(k)) 9)
JEN;

The estimated value of the terminal state x;(k + Plk) is calculated through a iterative process, with its definition established for
each sampling period.

Gilk + PIK) = ATk + P — 1k — 1)+ > Ayr(k + P — 11 (k) (10)

JeN;

By solving the optimal problem , the optimized state trajectory X;(#,) can be described as:

X+ g+ 118) = Ak (8 + qth) + Biit (1 + gItt) + ZAijx;(z;; + gl (1) (11)
JEN;

Moreover, actual state trajectories x,’-k(tfc) are defined as:

X}t + g + 1) = Ayx] (), + qlt) + Bty (1, + qity) + > Agx (1 + gl (1) + di(1}) (12)
JEN;

For formulas and , the optimal inputs are obtained by solving the OCP. It implies that the actual input u; (k) and
neighbouring states x;(#;) are difficult to obtain for subsystem i at triggering instant #,. In addition, the unknown disturbances
also bring a great challenge to the accuracy of control. On this basis, the event-triggered strategy is proposed to ensure system
performance while reducing communication resource consumption.
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Define the triggering condition of subsystem i,i € N as:
[[xith) =57 (ki) [, = . (13)

where X} (klo'(2})) denotes the feasible state that describes a state trajectory at a non-triggered instant. &; is a constant satisfying
0; > 0. This condition imposes limits on the error of the subsystem at non-triggered instants, ensuring that it remains within an
allowable range and thereby guaranteeing global performance.

Considering the prediction horizon of local controllers, the state information received from neighbours has at most P values.
Therefore, the triggering condition will be set at #; + P to guarantee that the optimization control process will be addressed
even if the condition (I3)) is not met throughout the entire prediction horizon.

k>t +P. (14)

Then the optimal input it} (#;, , + qlti,,) can be gained by solving the OCP, and the state X} (;,, + glti,,) will be transmitted to
the neighbouring subsystems. The investigated algorithm is summarised as Algorithm [I]

Algorithm 1 Event-triggered Model Predictive Control algorithm

Initialization: For the i-th local controller, select matrices H; and C; with
proper dimensions and calculate K; and P;; select parameters k and ¢;; set initial
values x;(0) and u;(0).
for X,'(l‘;;) ¢ Qi(o;) do
if k=0 then
Solve the OCP () and gain the optimal input itf(t6+q|t6), qg=0,....,P-1.
The first term of optimal input L“t;‘(tf)ltf)) will be applied to subsystem i.
Transmit 56?‘(2‘6+q|t6), qg=0,...,P to all the neighbouring subsystems j, j€N;.
end if
Check the event-triggered conditions ([13)) and (14) .
while Conditions ([13) and (14])) are not satisfied do
Implement if(k+qlp'(k)) on the subsystem i.
end while
Solve the optimal problem (7) and gain the optimal input i (# +4lt)), ¢=0,...,P-1.
The first term of optimal input ﬁf(t};lt,’;) will be applied to subsystem i.
Transmit X/(k+g¢l), ¢=0,...,P to all neighbouring subsystems j, j€N;.
k+—k+1
end for
Implement the control law u;(k) = Kix;(k) on the subsystem i.

4 | PROPERTIES OF THE CLOSED-LOOP SYSTEM

The feasibility of the distributed optimization process and the investigation of adequate conditions to ensure the stability of
the closed-loop system are examined in this section. Additionally, a robustness analysis of the system is presented.

The discussion below assesses the feasibility of the OCP to guarantee a smooth local MPC iterative process. The optimization
control problem (7)) is assumed to be solved at 7i. Then it’s necessary to ensure the optimization process can proceed at 7, ;. The
feasible control inputs are constructed in (), which implies the feasible input of non-triggered instant can be selected as the
optimal control input at the most recent triggering instant. Besides, the terminal control law can stabilize the subsystem based on
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Lemma Therefore, the optimization problem is solvable at ., ;. The feasible state is described as:

xXi(k + qlk) = A (k) + ZAW‘ Biiui(k + rlk) + Z ZA‘I"‘ 5 (k+rigi(k)) (15)
r=0 jeN; r=0

Based on equation (TT), it can be inferred that:

Xk + qlth) = AT (1) + ZA?;’“B ki) + > ZAQ‘" % (k+ g (1)) (16)

r=0 jeN; r=0

The distinction between the feasible state and the optimal state can be described as follows:

xi(k + qlk) = X} (k+ qlt;)

=A%xi(k) - X7 (Kltf) + ) ZA"" LAy (%7 (K + H () = X7 (k + 7l (1)]

JEN; r=0
q-1
=Afeik)+> > ek + rig' (k) (17)
jeN; r=0

where ¢;(k + rlp'(k)) = X (k + ryi(k)) - X (k + rlp'(1h)), ei(k) = x;(k) — X (kltb).
The following lemma demonstrates that possible states will eventually reach the terminal region 2;(c;) under the designed
local model predictive controller.

Lemma 2. Consider the i-th subsystem described in (1)) and suppose that Assumptions[IH3] hold. If the following conditions are
satisfied, the OCP can be solved at each t.,.

koi(1—=)

5 < — - (18)
max A% (P (af)" Pade?)
g€(l,...,.P-1}
where vy is a constant satisfying v € (0, 1). Then, we can get X; (k + P — 1lk) € Q; (0;).
Proof. Applying the triangle inequality and combining formula (I7)), we have
%k + gl p, = |57 (k +ql) ||,
< ||xick + qli) = %7 (k + glt;) Hp,.
q-1
1 ‘
i ei(k)HP Loyt LD |ntek + g )|, (19)

i JEN; r=0
< (P (aD)" Py )||e<k>||p+ZZA* (" Pim) [lek+ ')
jeN; r=0

It can be known that the constrain is satisfied at the triggering instant. Hence, if the condition (I8) holds, we can have:

Ha‘c~(k+qlk>||p 1% (k+qii) |,
b (P (a0 PALP) 6y x 20

u i nl

(1 =Y)Kko; + YKkO; < KO;
When g = P — 1, using the constrain can obtain that

ik + P = 1) |p, < 15 (k+ P = 1)) |p, + ko < o 1)
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It implies that x; (k + P — 1lk) € Q; (o). O
Then, the feasibility of terminal states constraint is discussed as follows.

Lemma 3. For i—th subsystem, if Assumptions[IH3| hold, terminal states will be in the invariant set under the following condition:
_1 1
I—A(PizH;‘Pﬁ) <(1—r)? (22)

where H} = H; + KFCK;

Proof. Tt is shown in Lemma [I] that the feedback control input can stabilize the control system when states are within the
designed invariant region £2;(o;). The estimated terminal state is described as X;(k + Plk) shown in (10). The difference between
feasible terminal states and estimated terminal states is expressed as:

ik + P, = (1 (k + P, < fJAe Xk + P = 1) =% (k + P~ 1k = DIl (23)
By utilizing Lemma|T] alongside Assumptions|I]to[3]
%k + PW[, - [|xi(k + P — 1k = D3,

<] (k + Plk — 1)(A] PA:)xi(k + Plk — 1)
<-|[xk+P - k=D,
P2

H*P 2

it

<-A(PRHIPT) Itk P - 1K= D, (24)
Combining formulas (22)) and (24) yields that

ik + PR,

g\/l _A (P;%H;‘P;%) itk + P = 1= 1),

<\/1 Y (P;%H;‘P;%) x 07 < (1 - k)0 (25)

Therefore, ||x;(k + Plk)||p, < o, i.e., the feasible terminal state is in the terminal set. It is also shown that X;(k + P) € Q;(0;)
according to the designed feasible control input. O

Remark 2. According to the above analysis, the selection of parameters «y and « is an important factor affecting the feasibility. It
can be seen in formula (I8)), the upper bound of triggering threshold d; is determined by  and «. If the parameter « increases or
~ decreases, the upper bound of triggering level §; will be larger inevitably. Then the larger the selected x, the smaller (1 — k)
will be, which implies that the constraints on the optimal prediction state are more strict based on (7d). Moreover, the value
range of x can be obtained by (22).

With the feasibility of iteration and constraints now guaranteed, the following section will address the closed-loop stability.
The analysis demonstrates that even under the unknown disturbances, and the state trajectories will converge to a bounded region.
Additionally, this also illustrates that the closed-loop system will retain stability when there are no external disturbances as per
equation (2).

Theorem 1. Given that Assumptions[I{3|and the feasibility conditions ({[8) and ([22) are hold for the subsystem i. The parameters
of parameters k and P are chosen to satisfy the condition given below.

P=DACD 2 k) + 250, < 201

A(P)) X, 720 =m0, (26)

then the stability of the closed-loop system without disturbances can be guaranteed.
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Proof. According to the definition of the cost function in (6), the local optimal cost function can be described as:

P-1
TEG). i) = > (1% G+ qle) By, + 17 Gk + qle) |13 + 157 (ke + Pl 3, 27)

q=0

The Chosen Lyapunov function candidate V(X, &z) is defined as V(x, &t) = Zi\; Jr ()“c,-(t};), ﬁi(t};)). For such a Lyapunov function, its
difference can be described as

AV(x, )

N N
=3 Tt i) = > 7 Gt (1))
i=1

i= i=1
N N

<Y T+ D, Wt + 1) = Y TFE), () (28)
i=1 i=1

where the feasible cost function at i + 1 can be defined as:

P-1
Tt + 1), a(f + 1)) = Z(H)’c,»(k +q+ Ui + D5, + |Juik + g+ Lt + D]|g) + ||x:(k + P + 1l + D[, (29)
q=0

According to formulas (27) and (2Z9) and considering the definition of feasible control input &;(k + ¢lk), the difference of
V(x, i) is as follows:

AV, i) < ATy + Ady + AJs + Ay (30)
where
N P2 ) .
ATy 2N [[Fk + g + Lt + D][3,, - 1% (k+ g + 118)]3,,] @31
i=l g=1
N . .
ATy £ Y [lxik+ Pl + D3, - (15 G+ Pl 3,1 (32)
i=1
N . .
AJs £ [[xCKk + 1ty + D)3, — 155 G+ 116)]13,,] (33)
=1
N . .
ATy 2 1% KI5, + [l Ki)|2,] (34)

i=1
In what follows, we investigate the detailed properties AJ;, AJ,, AJ; and AJ, separately. We obtain

A (H;)
A(P)

[|Xi(k + g + 1z + 1) =X (k + g + 111)]| p,(

Xk +q+ 1t + D|p, + || (k + g+ 11£)||p)] (35)

Using the condition ||x;(k + ¢ + 11z + 1)

p < ||XF(k+ g+ 1I£})||p, + ko;. Then, we have

N P
ALY A (o121 = k)0 + ko)

N _

2
N (36)



10 | Du ET AL.

Analogously, we can obtain that ||X;(k + Pl + 1) - X (k + PIt)||p, < ko; and ||%;(k + Pl + 1) p, + || %7 p; < 203, then
AJ, < Z 2k07 (37)
Based on condition (@), we can obtain

< zl: iig’) 21 - K)o6; (38)
Since x;(k) ¢ Q;(¢;), then the upper bound of AJy can be given as
ATy < - A(H) XK |3 < S XAH) 2 (39)

:1* =1*

Using the condition in Theorem we have AV(X, it) = Zf\il 7 (e, ), (2, ) = JF (%i(2h), it (£))] < 0. This implies that states
can converge to the region {2(c) within finite time. If the additive disturbance d;(k) = 0, it follows that the resulting closed-loop
system exhibits asymptotic stability with respect to the origin. O

Theorem 2. Considering the subsystem i in (1)), assuming that Assumptions[I}3| hold, the feasibility conditions (I8), (22),as well
as the stability condition , are satisfied. Moreover, if the disturbance d(k) is bounded such that ||d(k)|| < d, then the state

will reach a bounded region (), where & = 4/ )\/(\7(51)5(20 + /) and & \+/P)d.

Proof. Using the dual-model strategy, the terminal control input u;(k) = K;x;(k) is implemented for the subsystem i as shown in
(). The Lyapunov function V;(x;(k)) = ||x;(k)||3, is chosen. For the global system, one can obtain that

N
AV((k) =Y (Vilxilk + 1) = Vixi(k))

pur 2 2 (40)
=||Acx(k) + d(k)||p — [|x(F)[| 5

=x"(k)(ATPA. — P)x(k) + 2x" (k)AL Pd(k) + d* (k)Pd(k)

According to Lemmal[] one can infer that

)\ *
AV(x(k) < - 3(20)) b+ [dO + 2 Acxk)VP VP ldw)|
LA @
S

Then we conclude that the state can reach 2(¢) in a finite time, which implies state trajectories can eventually converge to the
bounded region under unknown bounded disturbances. {2(7) is the robust invariant for the subsystem in (T). Finally, the proof of

Theorem 2] is now concluded. O]
5 | SIMULATION EXAMPLE

This section demonstrates that the developed method can achieve distributed control of a collection of dynamic coupling
subsystems under disturbances. To assess the feasibility of the suggested distributed strategy, a benchmark scenario involving
a four-tank system is employed. The illustration of the four-tank process is shown in Fig.[I] and the simplified model can be
described as:
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O

Pump 1

FIGURE 1 Illustration of the four-tank process

dhl _ \/2g—hl+ \/— Ol]k]
dhz __ \/2—]12 (1 Oél)kl v
dh3 = \/2 h3 + \/Zghz + —V2
dh4 __ /—2 7 (1 Oég)kz

where the water tank level is represented by 4;,i = 1,2, 3, 4. The corresponding cross-sectional area denoted by A;, and the
cross-sectional area of water tank outlet is represented by «;. v; and v, are the voltages of two pumps, the parameter k; is a
conversion parameter. Moreover, «; and «; indicate the ration of two three-way valves, and g is the gravitational acceleration.
The relevant parameters can be found in?%: A, = A, = 28 cm?, Ay = A3 = 32 em?, a; = a4 = 0.071 cm?, a = a3 = 0.057 cm?,
ki = 3.35 cm?®/Vs, ky = 3.33 cm?/Vs, o = 0.7, and «; = 0.6. Then the discrete-time linear model can be obtained:

(42)

Ohi(k+1) 098 0 0 0.04 Ohy (k) 008 0

Shptk+1)| | 0 097 0 0 Ohy (k) + 003 0 ovy(k) 43)
Shy(k+1) | | 0 003099 0 Ohs (k) 0 0.06| |dvak)
Ohy(k + 1) 0 0 0 096 Ohy(k) 0 0.05

The system shown in Equation (#3) can be divided into two coupled subsystems. The parameter matrices are given as H; = I
and C; = 1. The feedback control gain K; and the symmetric matrix P; are gained referring to the work of23.

K, =[-1.0439 - 0.2726],
K, =[-1.2131-0.3562],

[ 19.0046 —12.2731
7 Z12.2731 44.1559

[ 34.8631 —15.2952
271 215.2952 26.9819

The parameters of DMPC strategy are given as follows: ¢; = 0.6, P = 5, k = 0.0035, v = 0.8. The disturbance vector
d; is designed as a variable where each element varies the range of [-0.01,0.01]. The initial state of two subsystems are
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x1(0) = [0.825,0.203]T and x,(0) = [0.647,0.250]. Moreover, it can be verified that the designed parameters satisfy the sufficient

conditions (26).

States of subsystem1

051

- -1y

T12

0 50 100
Time (s)

FIGURE 2 States and input of subsystem 1
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FIGURE 3 States and input of subsystem 2
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The simulations are shown in the following Fig. [2|to Fig. @] The states and inputs of two subsystems are displayed in Fig.
P]and Fig.[3] The state trajectories and control inputs of the four-tank system are convergent, and terminal states can enter a
robust admissible invariant set under bounded random disturbances. This implies that the proposed distributed event-triggered
predictive control strategy is feasible and robust. In addition, Fig. @ denotes the triggering signals of the local model predictive
controllers. Once the triggering conditions are met, a signal will be generated to initiate the optimization problem solving
process. The local controller 1 triggers six times within the range of k = 150, where the triggering occurs in steps of k = 1,
k=19, k=20, k=21, k=22 and k = 59, respectively. Then it can be also drawn that the local controller 2 triggers seven
times during the iteration process. It shows that the designed event-triggered strategy greatly reduces the control time of the
local model predictive controller, thereby reduces the consumption of communication resources. It is evident that the designed

strategy can effectively ensure control performance while minimising communication and computational load.
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% triggering signal 1
% triggering signal 2

Triggering signals of controllers

0 50 100 150
Time (s)

FIGURE 4 Triggering signals of controllers

6 | CONCLUSIONS

A novel event-triggered DMPC formulation for a collection of discrete-time linear systems subject to additive bounded
disturbances is investigated in this paper. In the distributed control process, considerations include he neighbouring states and the
asynchronous information transmission, employing the event-triggered mechanism and dual-mode control strategy to lessen the
communication load and maintain the stability in the distributed system. Furthermore, special conditions are tailored specifically
for ensuring the feasibility of optimization, stability of the entire system, and robustness of the proposed algorithm. Ultimately,
the efficacy of the devised control strategy are validated through simulation results.
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