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Versatile Video Coding (VVC) introduces advanced techniques such
as sophisticated intraprediction mechanisms that significantly improve
compression efficiency. However, the increased complexity in intrapre-
diction presents new challenges in computational load and power con-
sumption, essential considerations for efficient video coding. This paper
proposes a novel framework that combines discrete wavelet transforms
(DWT) and histogram analysis to optimise the prediction directions in
VVC. Through selective reduction of prediction directions based on
dominant texture orientation and minimising residual energy, the frame-
work achieves enhanced computational efficiency while maintaining
video quality. Experimental results confirm its effectiveness, showing
minimum rate distortion performance and superior encoding efficiency
compared to other methods in the literature.

Introduction: The International Telecommunication Union (ITU) and
the Joint Video Experts Team (JVET) recently introduced the Versatile
Video Coding (VVC) standard, marking the next generation in video
coding [1]. VVC achieves a 50% bitrate reduction over its predecessor,
High Efficiency Video Coding (HEVC), without compromising visual
quality. This impressive compression efficiency is mainly due to two
core techniques: intraprediction and interframe motion compensation.
Intra-prediction plays a vital role in achieving high visual quality within
VVC by predicting pixel values within a frame based on adjacent pix-
els, thereby reducing spatial redundancies. VVC introduces a sophis-
ticated partitioning scheme, allowing each 128x128 Coding Tree Unit
(CTU) to be divided into smaller blocks to 4x4 pixels using various par-
titioning modes [2]. These include Binary Tree (BT) splits for vertical
and horizontal division, Ternary Tree (TT) splits for three-part division,
and the innovative Quad-tree Plus Multi-Type Tree (QTMT) structure
[3], which combines quad-tree splits with binary and ternary options
for enhanced flexibility. Unlike HEVC, which relies on a fixed predic-
tion unit (PU) concept, VVC dynamically adapts prediction directions
based on varying block structures. This adaptability enables for more
precise intraprediction of complex textures, enhancing compression effi-
ciency. However, the increased complexity in intra-prediction presents
new challenges in computational load and power consumption, essential
considerations for efficient video coding.

This paper presents a novel method to optimise intraprediction in
VVC by using wavelet transforms and histogram analysis methods to
selectively reduce the number of prediction directions while maintain-
ing video quality. By minimising computational load, encoding time,
memory use, and energy consumption, our approach aims to achieve
a practical balance between compression efficiency and computational
resource savings. Three navalities have introduced this paper. The first
one is the DWT and histograme-based selective hybrid method to reduce
the intra-prediction directions. The second is quality maintenance using
the minimum residual energy selection process while the intraprediction
direction is selected. The third characteristic is that we have used con-
stant bitrate (CBR) to encode in experimental design. In the literature,
no CBR method is found to be used in this kind of research.

Related work: Versatile Video Coding (VVC) introduces advanced cod-
ing tools and flexible block partitioning that offer substantial compres-
sion efficiency over HEVC. However, this complexity requires opti-
mised approaches to manage the computational demands in the encod-
ing. In VVC, the partitioning of the Coding Tree Unit (CTU) is man-
aged through the Quad Tree with structures based on the Multi-type Tree
(QTMT), represented by Partition Hierarchy Maps (PHM), which out-
line the partition structure at 8x8 unit levels [3]. CTUs are classified
according to partition prediction difficulty, with a decision tree used to
select optimal split modes according to the PHM. Adaptive networks

with varying capacities are employed for different CTU classes, effec-
tively balancing performance on complex CTUs and reducing compu-
tation for simpler structures. Most Frequent Mode (MFM) for Intra-
Mode Coding: A new intra-mode coding method, MFM, extends the
Most Probable Mode (MPM) by encoding the prediction mode based on
the frequency of the mode in neighbouring blocks [4]. The methodol-
ogy described in [5] introduces a deep learning framework to enhance
the efficiency of the VVC standard by predicting partition paths during
intercoding. To handle screen content with step and asymmetric edges,
Geometric Partitioning Mode (GPM) uses an adaptive blending tech-
nique with four matrices chosen based on local discontinuities and gra-
dients [6]. VVenC incorporates a hierarchical combination of picture-
level and in-picture parallelisation, achieving up to a 4x speedup with
four threads [7]. This parallelisation leverages smaller CTU block sizes,
wavefront processing, and tile partitioning configurations, allowing effi-
cient encoding across varying video resolutions and presets. To address
the vast search space for encoding in VVC, heuristic algorithms [8] with
recursive splits of the early termination limit effectively reduce runtime.
This approach helps the VVenC encoder maintain high compression effi-
ciency with reduced computational overhead. A classification-prediction
framework accelerates CU partitioning by categorising CTUs based
on prediction complexity and selecting subnetworks accordingly. This
adaptive approach streamlines PHM prediction [9], enhancing coding
efficiency by focussing resources on complex partitions. VVC requires
a targeted pruning of the encoder search space [10]. Effective strategies
are crucial to maintain both encoding performance and Quality of Expe-
rience (QoE) given the extensive block partitioning and intra-prediction
flexibility in VVC.

Proposed framework: This paper proposes a novel approach that com-
bines wavelet transforms and histogram analysis to optimise the predic-
tion directions in VVC. This integrated method harnesses the strengths
of both techniques, utilising wavelet analysis for multiscale texture ori-
entation and histogram analysis for detailed directional consistency. This
synergy facilitates a highly selective, efficient, and precise intrapredic-
tion process. The proposed model employs a sequential, step-by-step
procedure to determine the optimal number of prediction directions for
each coding unit (CU). Fig. 1 illustrates the high-level operations of the
proposed method. The initial stage of the VVC codec’s encoding pro-
cess involves block partitioning, where the video frame is segmented
into CTUs. VVC supports a maximum CTU size of 128x128 pixels,
with the flexibility to partition blocks to a minimum size of 4x4 pix-
els, enabling fine-grained adaptation to varying content characteristics
within the frame. The CTUs in the VVC codec are recursively par-
titioned into smaller blocks using the QTMT structure. These parti-
tioned blocks are then processed along two parallel paths. In the first
path, the blocks are sent to a DWT converter, which decomposes each
CU block into different frequency subbands Low-Low (LL), Low-High
(LH), High-Low (HL), HL, High-High (HH) to capture various direc-
tional components. The energy of each subband is calculated by adding
the squared coefficients, providing an initial estimate of the dominant
orientation within the block. In the second path, the CU blocks are anal-
ysed through the generation of histograms. For each block, the gra-
dient magnitudes and orientations of individual pixels are computed
using Canny operators. These gradients are used to construct an orienta-
tion histogram that records the number of pixels corresponding to spe-
cific orientation ranges up to 16 bins (0°-22.5°, 22.5°-45°, 45°-67.5°,...
337.5°-360°). The output of both paths is then used to determine the opti-
mal intraprediction directions. The residual energy is calculated using
Equation 1. The residual block R(x,y) is computed by taking the differ-
ence between the original pixel values O(x,y) and the predicted pixel
values P(x,y) for each pixel location (x,y) within a block. The squared
values are then summed over all pixels in the block to obtain the residual
energy E, as denoted by Equation 2. Lower residual energy indicates bet-
ter prediction quality. Finally, the method that offers the lowest residual
energy between the DWT and histogram-based approaches is selected
for optimal intracoding.

DWT base prediction optimization: This process enables the identifica-
tion of directional textures within video content. This is an asthmatic
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Fig 1 High-level architecture of the proposed framework.

explanation of the proposed method. For a given block B of size NxN,
the DWT decomposes B into four sub-bands denoted by Equation 3.
Each sub-band S contains coefficients C(xy) for pixel (x,y) in that sub-
band as Equation 4. Calculate the energy of each subband by adding the
squared wavelet coefficients within each subband. The energy distribu-
tion across the subbands indicates the primary texture direction in the
block, where the energy of a subband ES is calculated as Equation 5.
Based on the energy analysis, prioritise only those prediction directions
that align with the dominant orientations. If ELH is the largest, hori-
zontal details dominate. If EHL is the largest, vertical details dominate.
If EHH is the largest, diagonal details dominate. This step significantly
reduces the number of prediction directions by limiting them to only
the directions that align with the dominant characteristics of the block.
Using the energy values of ELH, EHL, EHH the most relevant prediction
directions (Dselected) can be selected. Apply a filtering technique to fur-
ther smooth the prediction, especially if multiple directions are retained.
Mode-dependent intra-smoothing can be employed to avoid visual arte-
facts in cases where multiple predictions are used. For blocks where
multiple directions have similar energies, an adaptive filtering process is
applied, as shown in Equation 6, where Pd: Prediction based on direc-
tion d and wd: Weight proportional to the energy Ed of the corresponding
subband. If |D| is the total number of prediction modes in standard VVC
and |Dselected| is the reduced (|Dselected| < |D|). This reduces complexity,
where computational cost C is proportional to the number of modes as
in Equation 7.

𝑅2 (𝑥, 𝑦) = (𝑂 (𝑥, 𝑦) − 𝑃 (𝑥, 𝑦) )2 (1)

𝐸 =
∑︁
𝑥,𝑦

𝑅2 (𝑥, 𝑦) (2)

𝐵 =
𝐷𝑊𝑇−−−−→ {LL, LH, HL, HH} (3)

𝑆 = {𝐶xy}, 𝑥, 𝑦 ∈ [1, 𝑁/2] (4)

ES =

𝑁/2∑︁
𝑥=1

𝑁/2∑︁
𝑦=1

𝐶2
𝑥𝑦 (5)

𝑃final =
∑︁

𝑑∈𝐷selected

𝑤𝑑𝑃𝑑 (6)

𝐶reduced ≈ |𝐷 |
|𝐷selected |

𝐶standard (7)

Histogram base prediction optimisation: This approach uses gradient-
based histograms to guide the intra-prediction process to the most rele-
vant directions, minimising computational load. Gradients quantify the
intensity changes across neighbouring pixels, while histograms aggre-
gate orientation data to identify predominant texture directions. Analyse
the orientation histogram to find the bin(s) with the highest counts, rep-
resenting the predominant orientation(s) in the block. Using the Canny
edge detection operator[11], compute the gradient magnitudes G(x,y) by
Equation 8 and orientations 𝜃(x,y) for each pixel (x,y) by equation 9 in
a block, Where O represents the original intensities of the pixels in the
block and 𝜕𝑂

𝜕𝑥
and 𝜕𝑂

𝜕𝑦
are the horizontal and vertical gradients, respec-

tively. For example, if the 45°-67.5° bins have the highest count, it sug-
gests a strong 45°-67.5° structure in the block. If a single orientation is
dominant, focus on prediction directions that align with this orientation.
If multiple orientations have similar counts, select the corresponding
prediction directions, favouring those with higher histogram counts. Bin
the gradient orientations 𝜃(x,y) into specific ranges. Each bin’s count
Hk represents the number of pixels that fall within its range. Equation 10
denoted orientation histogram formation where, w(x,y) is a weight based
on gradient magnitude G(x,y) and 𝛿 (𝑘, bin) is 1 if the orientation falls
into the bin k, otherwise 0. Based on the identified dominant orienta-
tion(s), choose a subset of prediction directions that best match the con-
tent. Find the bin(s) kmax with the highest counts Hk, representing the
dominant texture orientation (s) as Equation 11. When multiple direc-
tions are selected, apply a mode-dependent intra-smoothing technique
to refine the prediction result, reducing the likelihood of visual artefacts.
Equation 12 denotes this intra-smoothing technique where, Pd(x,y) is the
prediction from direction d and wd 𝛼 Hk, the histogram count for the
corresponding orientation. Focussing on dominant orientations ensures
a lower residual energy Eres of equation 13.

𝐺 (𝑥, 𝑦) =

√︄(
𝜕𝑂

𝜕𝑥

)2
+

(
𝜕𝑂

𝜕𝑦

)2
(8)

𝜃 (𝑥, 𝑦) = arctan

(
𝜕𝑂
𝜕𝑦

𝜕𝑂
𝜕𝑥

)
(9)

𝐻𝑘 =
∑︁
(𝑥,𝑦)

𝑤 (𝑥, 𝑦) · 𝛿
(
𝑘, bin(𝜃 (𝑥, 𝑦) )

)
(10)

𝑘max = arg max
𝑘

𝐻𝑘 (11)

𝑃final (𝑥, 𝑦) =
∑︁
𝑑∈𝐷

𝑤𝑑 · 𝑃𝑑 (𝑥, 𝑦) (12)
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Fig 2 RD curves for video classes.
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Table 1. Comparison of the Performance Metrics for Latest Research and the Proposed Approach.

Class
Tissier et al. [2], VTM 10.2 Proposed, VTM 10.2 Peng et al. [3], VTM 13.2 Proposed, VTM 13.2 Liu et al. [5], VTM 11 Proposed, VTM 11

BDBR (%) Δ𝑇 (%) BDBR (%) Δ𝑇 (%) BDBR (%) Δ𝑇 (%) BDBR (%) Δ𝑇 (%) BDBR (%) Δ𝑇 (%) BDBR (%) Δ𝑇 (%)

A1 1.81 51.1 1.28 52.4 2.01 48.1 1.26 53.0 1.47 26.1 1.27 51.5

A2 1.86 44.6 1.29 42.2 1.71 47.2 1.27 48.3 —- —- 1.27 46.3

B 2.21 46.5 1.72 42.3 2.17 47.9 1.71 49.2 1.06 23.3 1.68 45.2

C 3.20 43.1 1.89 47.4 1.98 44.2 1.88 48.1 0.29 17.3 1.88 44.6

D 3.02 36.8 2.23 46.4 2.09 38.5 2.22 44.5 0.15 08.8 2.21 40.0

E 1.45 38.7 1.05 47.1 1.66 40.8 1.05 44.2 0.80 14.2 1.05 40.1

Average 2.26 43.5 1.57 46.3 1.94 44.5 1.56 47.88 0.83 19.34 1.56 45.6

𝐸res =
∑︁
(𝑥,𝑦)

[𝑂 (𝑥, 𝑦) − 𝑃final (𝑥, 𝑦) ]2 (13)

Δ𝑇 =
𝑇baseline − 𝑇optimized

𝑇baseline
× 100% (14)

Experimental Setup: The experiment uses a widely recognised classi-
fied video dataset that is frequently cited in the literature [2, 3, 5]. The
study is conducted using VTM reference software, which has been com-
monly used in the literature for performance comparison. It is compared
with the same version used in the literature. A Constant Bitrate (CBR)
encoding method is used to ensure a consistent data rate for the exper-
iment and optimise live video streaming. The testing environment is
set up on Ubuntu 22.04.3 LTS, running Linux Kernel 6.5 on a 64-bit
Intel Core i7 architecture with hyperthreading, 16 GB RAM, and GPU-
enabled acceleration. Intel Media SDK is used to enhance video process-
ing performance. The evaluation employs PSNR and Video Multimethod
Assessment Fusion (VMAF) metrics to compute rate distortion perfor-
mance, with the Bjntegaard Metric (BD-Rate) used for rate-distortion
comparison. The encoded time gain (Δ𝑇) is analysed as a measure of the
reduction of relative complexity, quantifying the performance improve-
ment achieved by optimisations. The complexity reduction is calcu-
lated by comparing the encoding times with and without the applied
technique, as described in Equation 14 where Where Tbaseline Encod-
ing/decoding time of the unoptimized system and Toptimized Encod-
ing/decoding time of the optimised system.

Table 2. Comparison of Performance Metrics for State-of-the-Art
CODECs and the Proposed Approach.

Class
Proposed, Vvenc 1.12.1 Proposed, VTM 23.0

BDBR (%) Δ𝑇 (%) BDBR (%) Δ𝑇 (%)

A1 -18.21 -28.2 1.21 54.2

A2 -16.53 -19.1 1.22 50.1

B -14.17 -26.8 1.67 53.6

C -16.98 -24.2 1.98 49.2

D -18.12 -12.5 2.11 47.7

E -15.66 -29.4 1.02 48.3

Average -16.61 -23.34 1.53 50.5

Experimental Results: The performance of the proposed method was
thoroughly evaluated and analysed to assess its effectiveness in terms of
quality distortion and performance improvement. The analysis focused
on two key metrics: the reduction in quality distortion and the computa-
tional efficiency of the method. A lower degree of quality distortion, as
demonstrated by metrics such as VMAF, indicates the significant advan-
tage of the proposed approach in preserving visual fidelity while achiev-
ing compression. This highlights its ability to maintain high video qual-
ity, even with reduced computational demands. Furthermore, the reduc-
tion in complexity achieved by the proposed method was quantified by
evaluating the savings in coding time. The reduction in encoding time,

represented by metrics such as (Δ𝑇), underscores the efficiency of the
method in minimising computational overhead.

Fig 2 illustrates the performance of the proposed method, demonstrat-
ing minimal quality distortion compared to standard VTM and optimised
VVenc encoders (please zoom in for an improved viewing experience).
The results indicate that the proposed method achieves slightly lower
quality distortion than VTM while delivering better quality preservation
than VVenc, highlighting its effectiveness in maintaining video fidelity.
Table 1 presents the reduction in complexity and performance improve-
ment achieved by the proposed method, quantified using (Δ𝑇). The pro-
posed method demonstrated lower quality distortion and reduced encod-
ing complexity compared to [2] and [3]. This indicates that the proposed
method provides significant improvements in both quality and complex-
ity compared to the aforementioned literature. However, the proposed
method exhibited slightly higher quality distortion and a greater reduc-
tion in encoding complexity compared to [5]. This suggests that while
the proposed method achieves a better reduction in coding complexity,
[5] performs better in terms of quality. Table 2 compared to the opti-
mised VVenc encoder, the proposed method ensured better quality, while
VVenc excelled in reducing the complexity of coding. Using VTM 23.0
as the reference model encoder, the proposed method showed a minimal
difference in BD-Rate from VTM while delivering exceptional perfor-
mance in reducing coding complexity. This performance enhancement
not only accelerates the encoding process, but also demonstrates the fea-
sibility of the proposed method for real-time and resource-constrained
applications.

Conclusion: The proposed framework leveraging wavelet-based multi-
scale texture orientation and histogram-driven directional consistency,
the approach reduces computational complexity while maintaining high
video quality. Experimental results confirm its effectiveness, showing
superior rate distortion performance and encoding efficiency compared
to standard VVC and optimised VVenc encoders and a savings of coding
complexity over the VTM reference encoder and other methods in the
literature. The framework achieves excellent balance of reduced qual-
ity distortion and increased performance, as demonstrated by quality
metrics and encoding performance metrics, and significantly decreases
encoding time, highlighting its suitability for modern video compression
demands.
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Electronics Letters 59(7), e12770 (2023). doi:10.1049/ell2.12770.
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ell2.12770

4. Yoon, Y.â., et al.: Most frequent mode for intraâĂŘmode cod-
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