References
Achen, C. H. (1982). Interpreting and Using Regression . SAGE Publications, Inc. https://doi.org/10.4135/9781412984560
Azen, R., & Budescu, D. V. (2003). The dominance analysis approach for comparing predictors in multiple regression. Psychological Methods , 8 (2), 129–148. https://doi.org/10.1037/1082-989X.8.2.129
Bartoń, K. (2022). MuMIn: Multi-Model Inference . https://doi.org/10.32614/CRAN.package.MuMIn
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology & Evolution , 24 (3), 127–135. https://doi.org/10.1016/j.tree.2008.10.008
Bradter, U., Kunin, W. E., Altringham, J. D., Thom, T. J., & Benton, T. G. (2013). Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm.Methods in Ecology and Evolution , 4 (2), 167–174. https://doi.org/10.1111/j.2041-210x.2012.00253.x
Breiman, L. (2001). Random Forests. Machine Learning ,45 (1), 5–32. https://doi.org/10.1023/A:1010933404324
Budescu, D. V. (1993). Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression.Psychological Bulletin , 114 (3), 542–551. https://doi.org/10.1037/0033-2909.114.3.542
Chapple, D. G., Simmonds, S. M., & Wong, B. B. M. (2012). Can behavioral and personality traits influence the success of unintentional species introductions? Trends in Ecology & Evolution ,27 (1), 57–64. https://doi.org/10.1016/j.tree.2011.09.010
Chevan, A., & Sutherland, M. (1991). Hierarchical Partitioning.The American Statistician , 45 (2), 90. https://doi.org/10.2307/2684366
Cutler, D. R., Edwards Jr., T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random Forests for Classification in Ecology. Ecology , 88 (11), 2783–2792. https://doi.org/10.1890/07-0539.1
Darlington, R. B., & Hayes, A. F. (2017). Regression Analysis and Linear Models: Concepts, Applications, and Implementation. New York: The Guilford Press.
Dawson, W., Moser, D., van Kleunen, M., Kreft, H., Pergl, J., Pyšek, P., Weigelt, P., Winter, M., Lenzner, B., Blackburn, T. M., Dyer, E. E., Cassey, P., Scrivens, S. L., Economo, E. P., Guénard, B., Capinha, C., Seebens, H., García-Díaz, P., Nentwig, W., … Essl, F. (2017). Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology & Evolution , 1 (7), Article 7. https://doi.org/10.1038/s41559-017-0186
Debeer, D., & Strobl, C. (2020). Conditional permutation importance revisited. BMC Bioinformatics , 21 , 307. https://doi.org/10.1186/s12859-020-03622-2
Essl, F., Dawson, W., Kreft, H., Pergl, J., Pyšek, P., Van Kleunen, M., Weigelt, P., Mang, T., Dullinger, S., Lenzner, B., Moser, D., Maurel, N., Seebens, H., Stein, A., Weber, E., Chatelain, C., Inderjit, Genovesi, P., Kartesz, J., … Winter, M. (2019). Drivers of the relative richness of naturalized and invasive plant species on Earth.AoB PLANTS , 11 (5), plz051. https://doi.org/10.1093/aobpla/plz051
Farrar, D. E., & Glauber, R. R. (1967). Multicollinearity in Regression Analysis: The Problem Revisited. The Review of Economics and Statistics , 49 (1), 92–107. https://doi.org/10.2307/1937887
Galipaud, M., Gillingham, M. A. F., David, M., & Dechaume-Moncharmont, F.-X. (2014). Ecologists overestimate the importance of predictor variables in model averaging: A plea for cautious interpretations.Methods in Ecology and Evolution , 5 (10), 983–991. https://doi.org/10.1111/2041-210X.12251
Ghosh, T., Powell, R. L., Elvidge, C. D., Baugh, K. E., Sutton, P. C., & Anderson, S. (2010). Shedding Light on the Global Distribution of Economic Activity. The Open Geography Journal , 3 (1), 147–160. https://doi.org/10.2174/1874923201003010147
Giam, X., & Olden, J. D. (2016). Quantifying variable importance in a multimodel inference framework. Methods in Ecology and Evolution ,7 (4), 388–397. https://doi.org/10.1111/2041-210X.12492
Gompert, Z., & Buerkle, C. A. (2009). A powerful regression-based method for admixture mapping of isolation across the genome of hybrids.Molecular Ecology , 18 (6), 1207–1224. https://doi.org/10.1111/j.1365-294X.2009.04098.x
Gravel, D., Guichard, F., & Hochberg, M. E. (2011). Species coexistence in a variable world. Ecology Letters , 14 (8), 828–839. https://doi.org/10.1111/j.1461-0248.2011.01643.x
Green, P. E., & Tull, D. S. (1974). Research for marketing decisions (3rd ed). Prentice-Hall.
Greenland, S., Maclure, M., Schlesselman, J. J., Poole, C., & Morgenstern, H. (1991). Standardized regression coefficients: A further critique and review of some alternatives. Epidemiology ,2 (5), 387–392.
Grömping, U. (2007). Estimators of Relative Importance in Linear Regression Based on Variance Decomposition. The American Statistician , 61 (2), 139–147.
Grömping, U. (2009). Variable Importance Assessment in Regression: Linear Regression versus Random Forest. The American Statistician , 63 (4), 308–319. https://doi.org/10.1198/tast.2009.08199
Grömping, U. (2015). Variable importance in regression models.WIREs Computational Statistics , 7 (2), 137–152. https://doi.org/10.1002/wics.1346
Harisena, N. V., Groen, T. A., Toxopeus, A. G., & Naimi, B. (2021). When is variable importance estimation in species distribution modelling affected by spatial correlation? Ecography , 44 (5). https://doi.org/10.1111/ecog.05534
Hoffman, P. J. (1960). The paramorphic representation of clinical judgment. Psychological Bulletin , 57 (2), 116–131. https://doi.org/10.1037/h0047807
Houlahan, J. E., McKinney, S. T., Anderson, T. M., & McGill, B. J. (2017). The priority of prediction in ecological understanding.Oikos , 126 (1), 1–7. https://doi.org/10.1111/oik.03726
Hulme, P. E., Bacher, S., Kenis, M., Klotz, S., Kühn, I., Minchin, D., Nentwig, W., Olenin, S., Panov, V., Pergl, J., Pyšek, P., Roques, A., Sol, D., Solarz, W., & Vilà, M. (2008). Grasping at the routes of biological invasions: A framework for integrating pathways into policy.Journal of Applied Ecology , 45 (2), 403–414. https://doi.org/10.1111/j.1365-2664.2007.01442.x
Johnson, J. W., & Lebreton, J. M. (2004). History and Use of Relative Importance Indices in Organizational Research. Organizational Research Methods , 7 (3), 238.
Kapos, V., Balmford, A., Aveling, R., Bubb, P., Carey, P., Entwistle, A., Hopkins, J., Mulliken, T., Safford, R., Stattersfield, A., Walpole, M., & Manica, A. (2008). Calibrating conservation: New tools for measuring success. Conservation Letters , 1 (4), 155–164. https://doi.org/10.1111/j.1755-263X.2008.00025.x
Kassambara, A., & Mundt, F. (2016). factoextra: Extract and Visualize the Results of Multivariate Data Analyses . https://doi.org/10.32614/CRAN.package.factoextra
Koper, N., & Manseau, M. (2009). Generalized estimating equations and generalized linear mixed-effects models for modelling resource selection. Journal of Applied Ecology , 46 (3), 590–599. https://doi.org/10.1111/j.1365-2664.2009.01642.x
Lai, J., Zou, Y., Zhang, J., & Peres-Neto, P. R. (2022). Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution , 13 (4), 782–788. https://doi.org/10.1111/2041-210X.13800
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software ,25 (1). https://doi.org/10.18637/jss.v025.i01
Leng, W., He, H. S., Bu, R., Dai, L., Hu, Y., & Wang, X. (2008). Predicting the distributions of suitable habitat for three larch species under climate warming in Northeastern China. Forest Ecology and Management , 254 (3), 420–428. https://doi.org/10.1016/j.foreco.2007.08.031
Leprieur, F., Beauchard, O., Blanchet, S., Oberdorff, T., & Brosse, S. (2008). Fish Invasions in the World’s River Systems: When Natural Processes Are Blurred by Human Activities. PLoS Biology ,6 (2), e28. https://doi.org/10.1371/journal.pbio.0060028
Liakhovitski, D., Bryukhov, Y., & Conklin, M. (2010). Relative importance of predictors: Comparison of Random Forests with Johnson’s Relative Weights. Model Assisted Statistics and Applications ,5 (4), 235–249. https://doi.org/10.3233/MAS-2010-0172
Liaw A. and Wiener M. (2002). Classification and Regression by randomForest. R News 2(3), 18–22.
Liu, M., Hu, S., Ge, Y., Heuvelink, G. B. M., Ren, Z., & Huang, X. (2021). Using multiple linear regression and random forests to identify spatial poverty determinants in rural China. Spatial Statistics ,42 , 100461. https://doi.org/10.1016/j.spasta.2020.100461
Lockwood, J. L., Cassey, P., & Blackburn, T. M. (2009). The more you introduce the more you get: The role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions , 15 (5), 904–910. https://doi.org/10.1111/j.1472-4642.2009.00594.x
Lucas, T. C. D. (2020). A translucent box: Interpretable machine learning in ecology. Ecological Monographs , 90 (4), e01422. https://doi.org/10.1002/ecm.1422
Mac Nally, R. (2000). Regression and model-building in conservation biology, biogeography and ecology: The distinction between – and reconciliation of – ‘predictive’ and ‘explanatory’ models.Biodiversity and Conservation , 9 , 655–671. https://doi.org/10.1023/A:1008985925162
Mac Nally, R. (2002). Multiple regression and inference in ecology and conservation biology: Further comments on identifying important predictor variables. Biodiversity & Conservation , 11 (8), 1397–1401. https://doi.org/10.1023/A:1016250716679
Mac Nally, R., Duncan, R. P., Thomson, J. R., & Yen, J. D. L. (2018). Model selection using information criteria, but is the “best” model any good? Journal of Applied Ecology , 55 (3), 1441–1444. https://doi.org/10.1111/1365-2664.13060
McKinney, M. L. (2002). Influence of Settlement Time, Human Population, Park Shape and Age, Visitation and Roads on the Number of Alien Plant Species in Protected Areas in the USA. Diversity and Distributions , 8 (6), 311–318.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2006).Introduction to linear regression analysis (4th ed). Wiley-Interscience.
Moser, D., Lenzner, B., Weigelt, P., Dawson, W., Kreft, H., Pergl, J., Pyšek, P., van Kleunen, M., Winter, M., Capinha, C., Cassey, P., Dullinger, S., Economo, E. P., García-Díaz, P., Guénard, B., Hofhansl, F., Mang, T., Seebens, H., & Essl, F. (2018). Remoteness promotes biological invasions on islands worldwide. Proceedings of the National Academy of Sciences , 115 (37), 9270–9275. https://doi.org/10.1073/pnas.1804179115
Mundry, R., & Nunn, C. L. (2009). Stepwise Model Fitting and Statistical Inference: Turning Noise into Signal Pollution. The American Naturalist , 173 (1), 119–123. https://doi.org/10.1086/593303
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods in Ecology and Evolution ,4 (2), 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
Nathans, L. L., Oswald, F. L., & Nimon, K. (n.d.). Interpreting Multiple Linear Regression: A Guidebook of Variable Importance . https://doi.org/10.7275/5FEX-B874
Peres-Neto, P. R., Legendre, P., Dray, S., & Borcard, D. (2006). Variation Partitioning of Species Data Matrices: Estimation and Comparison of Fractions. Ecology , 87 (10), 2614–2625. https://doi.org/10.1890/0012-9658(2006)87\%5b2614:VPOSDM\%5d2.0.CO;2
Pinheiro, J., Bates, D., & R Core Team. (2024). nlme: Linear and Nonlinear Mixed Effects Models (p. 3.1-166) [Dataset]. https://doi.org/10.32614/CRAN.package.nlme
Planque, B., & Buffaz, L. (2008). Quantile regression models for fish recruitment–environment relationships: Four case studies. Marine Ecology Progress Series , 357 , 213–223. https://doi.org/10.3354/meps07274
Pyšek, P., Jarošík, V., Hulme, P. E., Kühn, I., Wild, J., Arianoutsou, M., Bacher, S., Chiron, F., Didžiulis, V., Essl, F., Genovesi, P., Gherardi, F., Hejda, M., Kark, S., Lambdon, P. W., Desprez-Loustau, M.-L., Nentwig, W., Pergl, J., Poboljšaj, K., … Winter, M. (2010). Disentangling the role of environmental and human pressures on biological invasions across Europe. Proceedings of the National Academy of Sciences , 107 (27), 12157–12162. https://doi.org/10.1073/pnas.1002314107
R Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Ray-Mukherjee, J., Nimon, K., Mukherjee, S., Morris, D. W., Slotow, R., & Hamer, M. (2014). Using commonality analysis in multiple regressions: A tool to decompose regression effects in the face of multicollinearity.Methods in Ecology and Evolution , 5 (4), 320–328. https://doi.org/10.1111/2041-210X.12166
Simberloff, D. (2009). The Role of Propagule Pressure in Biological Invasions. Annual Review of Ecology, Evolution, and Systematics ,40 , 81–102. https://doi.org/10.1146/annurev.ecolsys.110308.120304
Smith, A. C., Koper, N., Francis, C. M., & Fahrig, L. (2009). Confronting collinearity: Comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecology ,24 (10), 1271–1285. https://doi.org/10.1007/s10980-009-9383-3
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics , 9 (1), 307. https://doi.org/10.1186/1471-2105-9-307
Taylor, B. W., & Irwin, R. E. (2004). Linking economic activities to the distribution of exotic plants. Proceedings of the National Academy of Sciences , 101 (51), 17725–17730. https://doi.org/10.1073/pnas.0405176101
Therneau, T. M., Atkinson, E. J., & Foundation, M. (1997). An Introduction to Recursive Partitioning Using the RPART Routines .
Wei, P., Lu, Z., & Song, J. (2015). Variable importance analysis: A comprehensive review. Reliability Engineering & System Safety ,142 , 399–432. https://doi.org/10.1016/j.ress.2015.05.018
Weisberg, S. (1985). Applied linear regression (2nd ed). Wiley.
Westphal, M. I., Browne, M., MacKinnon, K., & Noble, I. (2008). The link between international trade and the global distribution of invasive alien species. Biological Invasions , 10 (4), 391–398. https://doi.org/10.1007/s10530-007-9138-5
Whittingham, M. J., Stephens, P. A., Bradbury, R. B., & Freckleton, R. P. (2006). Why do we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology , 75 (5), 1182–1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x
Yee, R. W. Y., Yeung, A. C. L., & Cheng, T. C. E. (2008). The impact of employee satisfaction on quality and profitability in high-contact service industries. Journal of Operations Management ,26 (5), 651–668. https://doi.org/10.1016/j.jom.2008.01.001
Zheng, H. (2018). Analysis of Global Warming Using Machine Learning.Computational Water, Energy, and Environmental Engineering ,07 (03), 127–141. https://doi.org/10.4236/cweee.2018.73009