References
Achen, C. H. (1982). Interpreting and Using Regression . SAGE
Publications, Inc. https://doi.org/10.4135/9781412984560
Azen, R., & Budescu, D. V. (2003). The dominance analysis approach for
comparing predictors in multiple regression. Psychological
Methods , 8 (2), 129–148.
https://doi.org/10.1037/1082-989X.8.2.129
Bartoń, K. (2022). MuMIn: Multi-Model Inference .
https://doi.org/10.32614/CRAN.package.MuMIn
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J.
R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear
mixed models: A practical guide for ecology and evolution. Trends
in Ecology & Evolution , 24 (3), 127–135.
https://doi.org/10.1016/j.tree.2008.10.008
Bradter, U., Kunin, W. E., Altringham, J. D., Thom, T. J., & Benton, T.
G. (2013). Identifying appropriate spatial scales of predictors in
species distribution models with the random forest algorithm.Methods in Ecology and Evolution , 4 (2), 167–174.
https://doi.org/10.1111/j.2041-210x.2012.00253.x
Breiman, L. (2001). Random Forests. Machine Learning ,45 (1), 5–32. https://doi.org/10.1023/A:1010933404324
Budescu, D. V. (1993). Dominance analysis: A new approach to the problem
of relative importance of predictors in multiple regression.Psychological Bulletin , 114 (3), 542–551.
https://doi.org/10.1037/0033-2909.114.3.542
Chapple, D. G., Simmonds, S. M., & Wong, B. B. M. (2012). Can
behavioral and personality traits influence the success of unintentional
species introductions? Trends in Ecology & Evolution ,27 (1), 57–64. https://doi.org/10.1016/j.tree.2011.09.010
Chevan, A., & Sutherland, M. (1991). Hierarchical Partitioning.The American Statistician , 45 (2), 90.
https://doi.org/10.2307/2684366
Cutler, D. R., Edwards Jr., T. C., Beard, K. H., Cutler, A., Hess, K.
T., Gibson, J., & Lawler, J. J. (2007). Random Forests for
Classification in Ecology. Ecology , 88 (11), 2783–2792.
https://doi.org/10.1890/07-0539.1
Darlington, R. B., & Hayes, A. F. (2017). Regression Analysis and
Linear Models: Concepts, Applications, and Implementation. New York: The
Guilford Press.
Dawson, W., Moser, D., van Kleunen, M., Kreft, H., Pergl, J., Pyšek, P.,
Weigelt, P., Winter, M., Lenzner, B., Blackburn, T. M., Dyer, E. E.,
Cassey, P., Scrivens, S. L., Economo, E. P., Guénard, B., Capinha, C.,
Seebens, H., García-Díaz, P., Nentwig, W., … Essl, F. (2017).
Global hotspots and correlates of alien species richness across
taxonomic groups. Nature Ecology & Evolution , 1 (7),
Article 7. https://doi.org/10.1038/s41559-017-0186
Debeer, D., & Strobl, C. (2020). Conditional permutation importance
revisited. BMC Bioinformatics , 21 , 307.
https://doi.org/10.1186/s12859-020-03622-2
Essl, F., Dawson, W., Kreft, H., Pergl, J., Pyšek, P., Van Kleunen, M.,
Weigelt, P., Mang, T., Dullinger, S., Lenzner, B., Moser, D., Maurel,
N., Seebens, H., Stein, A., Weber, E., Chatelain, C., Inderjit,
Genovesi, P., Kartesz, J., … Winter, M. (2019). Drivers of the
relative richness of naturalized and invasive plant species on Earth.AoB PLANTS , 11 (5), plz051.
https://doi.org/10.1093/aobpla/plz051
Farrar, D. E., & Glauber, R. R. (1967). Multicollinearity in Regression
Analysis: The Problem Revisited. The Review of Economics and
Statistics , 49 (1), 92–107. https://doi.org/10.2307/1937887
Galipaud, M., Gillingham, M. A. F., David, M., & Dechaume-Moncharmont,
F.-X. (2014). Ecologists overestimate the importance of predictor
variables in model averaging: A plea for cautious interpretations.Methods in Ecology and Evolution , 5 (10), 983–991.
https://doi.org/10.1111/2041-210X.12251
Ghosh, T., Powell, R. L., Elvidge, C. D., Baugh, K. E., Sutton, P. C.,
& Anderson, S. (2010). Shedding Light on the Global Distribution of
Economic Activity. The Open Geography Journal , 3 (1),
147–160. https://doi.org/10.2174/1874923201003010147
Giam, X., & Olden, J. D. (2016). Quantifying variable importance in a
multimodel inference framework. Methods in Ecology and Evolution ,7 (4), 388–397. https://doi.org/10.1111/2041-210X.12492
Gompert, Z., & Buerkle, C. A. (2009). A powerful regression-based
method for admixture mapping of isolation across the genome of hybrids.Molecular Ecology , 18 (6), 1207–1224.
https://doi.org/10.1111/j.1365-294X.2009.04098.x
Gravel, D., Guichard, F., & Hochberg, M. E. (2011). Species coexistence
in a variable world. Ecology Letters , 14 (8), 828–839.
https://doi.org/10.1111/j.1461-0248.2011.01643.x
Green, P. E., & Tull, D. S. (1974). Research for marketing
decisions (3rd ed). Prentice-Hall.
Greenland, S., Maclure, M., Schlesselman, J. J., Poole, C., &
Morgenstern, H. (1991). Standardized regression coefficients: A further
critique and review of some alternatives. Epidemiology ,2 (5), 387–392.
Grömping, U. (2007). Estimators of Relative Importance in Linear
Regression Based on Variance Decomposition. The American
Statistician , 61 (2), 139–147.
Grömping, U. (2009). Variable Importance Assessment in Regression:
Linear Regression versus Random Forest. The American
Statistician , 63 (4), 308–319.
https://doi.org/10.1198/tast.2009.08199
Grömping, U. (2015). Variable importance in regression models.WIREs Computational Statistics , 7 (2), 137–152.
https://doi.org/10.1002/wics.1346
Harisena, N. V., Groen, T. A., Toxopeus, A. G., & Naimi, B. (2021).
When is variable importance estimation in species distribution modelling
affected by spatial correlation? Ecography , 44 (5).
https://doi.org/10.1111/ecog.05534
Hoffman, P. J. (1960). The paramorphic representation of clinical
judgment. Psychological Bulletin , 57 (2), 116–131.
https://doi.org/10.1037/h0047807
Houlahan, J. E., McKinney, S. T., Anderson, T. M., & McGill, B. J.
(2017). The priority of prediction in ecological understanding.Oikos , 126 (1), 1–7. https://doi.org/10.1111/oik.03726
Hulme, P. E., Bacher, S., Kenis, M., Klotz, S., Kühn, I., Minchin, D.,
Nentwig, W., Olenin, S., Panov, V., Pergl, J., Pyšek, P., Roques, A.,
Sol, D., Solarz, W., & Vilà, M. (2008). Grasping at the routes of
biological invasions: A framework for integrating pathways into policy.Journal of Applied Ecology , 45 (2), 403–414.
https://doi.org/10.1111/j.1365-2664.2007.01442.x
Johnson, J. W., & Lebreton, J. M. (2004). History and Use of Relative
Importance Indices in Organizational Research. Organizational
Research Methods , 7 (3), 238.
Kapos, V., Balmford, A., Aveling, R., Bubb, P., Carey, P., Entwistle,
A., Hopkins, J., Mulliken, T., Safford, R., Stattersfield, A., Walpole,
M., & Manica, A. (2008). Calibrating conservation: New tools for
measuring success. Conservation Letters , 1 (4), 155–164.
https://doi.org/10.1111/j.1755-263X.2008.00025.x
Kassambara, A., & Mundt, F. (2016). factoextra: Extract and
Visualize the Results of Multivariate Data Analyses .
https://doi.org/10.32614/CRAN.package.factoextra
Koper, N., & Manseau, M. (2009). Generalized estimating equations and
generalized linear mixed-effects models for modelling resource
selection. Journal of Applied Ecology , 46 (3), 590–599.
https://doi.org/10.1111/j.1365-2664.2009.01642.x
Lai, J., Zou, Y., Zhang, J., & Peres-Neto, P. R. (2022). Generalizing
hierarchical and variation partitioning in multiple regression and
canonical analyses using the rdacca.hp R package. Methods in
Ecology and Evolution , 13 (4), 782–788.
https://doi.org/10.1111/2041-210X.13800
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package
for Multivariate Analysis. Journal of Statistical Software ,25 (1). https://doi.org/10.18637/jss.v025.i01
Leng, W., He, H. S., Bu, R., Dai, L., Hu, Y., & Wang, X. (2008).
Predicting the distributions of suitable habitat for three larch species
under climate warming in Northeastern China. Forest Ecology and
Management , 254 (3), 420–428.
https://doi.org/10.1016/j.foreco.2007.08.031
Leprieur, F., Beauchard, O., Blanchet, S., Oberdorff, T., & Brosse, S.
(2008). Fish Invasions in the World’s River Systems: When Natural
Processes Are Blurred by Human Activities. PLoS Biology ,6 (2), e28. https://doi.org/10.1371/journal.pbio.0060028
Liakhovitski, D., Bryukhov, Y., & Conklin, M. (2010). Relative
importance of predictors: Comparison of Random Forests with Johnson’s
Relative Weights. Model Assisted Statistics and Applications ,5 (4), 235–249. https://doi.org/10.3233/MAS-2010-0172
Liaw A. and Wiener M. (2002). Classification and Regression by
randomForest. R News 2(3), 18–22.
Liu, M., Hu, S., Ge, Y., Heuvelink, G. B. M., Ren, Z., & Huang, X.
(2021). Using multiple linear regression and random forests to identify
spatial poverty determinants in rural China. Spatial Statistics ,42 , 100461. https://doi.org/10.1016/j.spasta.2020.100461
Lockwood, J. L., Cassey, P., & Blackburn, T. M. (2009). The more you
introduce the more you get: The role of colonization pressure and
propagule pressure in invasion ecology. Diversity and
Distributions , 15 (5), 904–910.
https://doi.org/10.1111/j.1472-4642.2009.00594.x
Lucas, T. C. D. (2020). A translucent box: Interpretable machine
learning in ecology. Ecological Monographs , 90 (4), e01422.
https://doi.org/10.1002/ecm.1422
Mac Nally, R. (2000). Regression and model-building in conservation
biology, biogeography and ecology: The distinction between – and
reconciliation of – ‘predictive’ and ‘explanatory’ models.Biodiversity and Conservation , 9 , 655–671.
https://doi.org/10.1023/A:1008985925162
Mac Nally, R. (2002). Multiple regression and inference in ecology and
conservation biology: Further comments on identifying important
predictor variables. Biodiversity & Conservation , 11 (8),
1397–1401. https://doi.org/10.1023/A:1016250716679
Mac Nally, R., Duncan, R. P., Thomson, J. R., & Yen, J. D. L. (2018).
Model selection using information criteria, but is the “best” model
any good? Journal of Applied Ecology , 55 (3), 1441–1444.
https://doi.org/10.1111/1365-2664.13060
McKinney, M. L. (2002). Influence of Settlement Time, Human Population,
Park Shape and Age, Visitation and Roads on the Number of Alien Plant
Species in Protected Areas in the USA. Diversity and
Distributions , 8 (6), 311–318.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2006).Introduction to linear regression analysis (4th ed).
Wiley-Interscience.
Moser, D., Lenzner, B., Weigelt, P., Dawson, W., Kreft, H., Pergl, J.,
Pyšek, P., van Kleunen, M., Winter, M., Capinha, C., Cassey, P.,
Dullinger, S., Economo, E. P., García-Díaz, P., Guénard, B., Hofhansl,
F., Mang, T., Seebens, H., & Essl, F. (2018). Remoteness promotes
biological invasions on islands worldwide. Proceedings of the
National Academy of Sciences , 115 (37), 9270–9275.
https://doi.org/10.1073/pnas.1804179115
Mundry, R., & Nunn, C. L. (2009). Stepwise Model Fitting and
Statistical Inference: Turning Noise into Signal Pollution. The
American Naturalist , 173 (1), 119–123.
https://doi.org/10.1086/593303
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for
obtaining R 2 from generalized linear
mixed-effects models. Methods in Ecology and Evolution ,4 (2), 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
Nathans, L. L., Oswald, F. L., & Nimon, K. (n.d.). Interpreting
Multiple Linear Regression: A Guidebook of Variable Importance .
https://doi.org/10.7275/5FEX-B874
Peres-Neto, P. R., Legendre, P., Dray, S., & Borcard, D. (2006).
Variation Partitioning of Species Data Matrices: Estimation and
Comparison of Fractions. Ecology , 87 (10), 2614–2625.
https://doi.org/10.1890/0012-9658(2006)87\%5b2614:VPOSDM\%5d2.0.CO;2
Pinheiro, J., Bates, D., & R Core Team. (2024). nlme: Linear and
Nonlinear Mixed Effects Models (p. 3.1-166) [Dataset].
https://doi.org/10.32614/CRAN.package.nlme
Planque, B., & Buffaz, L. (2008). Quantile regression models for fish
recruitment–environment relationships: Four case studies. Marine
Ecology Progress Series , 357 , 213–223.
https://doi.org/10.3354/meps07274
Pyšek, P., Jarošík, V., Hulme, P. E., Kühn, I., Wild, J., Arianoutsou,
M., Bacher, S., Chiron, F., Didžiulis, V., Essl, F., Genovesi, P.,
Gherardi, F., Hejda, M., Kark, S., Lambdon, P. W., Desprez-Loustau,
M.-L., Nentwig, W., Pergl, J., Poboljšaj, K., … Winter, M.
(2010). Disentangling the role of environmental and human pressures on
biological invasions across Europe. Proceedings of the National
Academy of Sciences , 107 (27), 12157–12162.
https://doi.org/10.1073/pnas.1002314107
R Core Team (2023). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Ray-Mukherjee, J., Nimon, K., Mukherjee, S., Morris, D. W., Slotow, R.,
& Hamer, M. (2014). Using commonality analysis in multiple regressions:
A tool to decompose regression effects in the face of multicollinearity.Methods in Ecology and Evolution , 5 (4), 320–328.
https://doi.org/10.1111/2041-210X.12166
Simberloff, D. (2009). The Role of Propagule Pressure in Biological
Invasions. Annual Review of Ecology, Evolution, and Systematics ,40 , 81–102.
https://doi.org/10.1146/annurev.ecolsys.110308.120304
Smith, A. C., Koper, N., Francis, C. M., & Fahrig, L. (2009).
Confronting collinearity: Comparing methods for disentangling the
effects of habitat loss and fragmentation. Landscape Ecology ,24 (10), 1271–1285. https://doi.org/10.1007/s10980-009-9383-3
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A.
(2008). Conditional variable importance for random forests. BMC
Bioinformatics , 9 (1), 307.
https://doi.org/10.1186/1471-2105-9-307
Taylor, B. W., & Irwin, R. E. (2004). Linking economic activities to
the distribution of exotic plants. Proceedings of the National
Academy of Sciences , 101 (51), 17725–17730.
https://doi.org/10.1073/pnas.0405176101
Therneau, T. M., Atkinson, E. J., & Foundation, M. (1997). An
Introduction to Recursive Partitioning Using the RPART Routines .
Wei, P., Lu, Z., & Song, J. (2015). Variable importance analysis: A
comprehensive review. Reliability Engineering & System Safety ,142 , 399–432. https://doi.org/10.1016/j.ress.2015.05.018
Weisberg, S. (1985). Applied linear regression (2nd ed). Wiley.
Westphal, M. I., Browne, M., MacKinnon, K., & Noble, I. (2008). The
link between international trade and the global distribution of invasive
alien species. Biological Invasions , 10 (4), 391–398.
https://doi.org/10.1007/s10530-007-9138-5
Whittingham, M. J., Stephens, P. A., Bradbury, R. B., & Freckleton, R.
P. (2006). Why do we still use stepwise modelling in ecology and
behaviour? Journal of Animal Ecology , 75 (5), 1182–1189.
https://doi.org/10.1111/j.1365-2656.2006.01141.x
Yee, R. W. Y., Yeung, A. C. L., & Cheng, T. C. E. (2008). The impact of
employee satisfaction on quality and profitability in high-contact
service industries. Journal of Operations Management ,26 (5), 651–668. https://doi.org/10.1016/j.jom.2008.01.001
Zheng, H. (2018). Analysis of Global Warming Using Machine Learning.Computational Water, Energy, and Environmental Engineering ,07 (03), 127–141. https://doi.org/10.4236/cweee.2018.73009