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Abstract

It is well established that heterogeneities in host susceptibility and infectiousness affect transmission,
and are typically assumed to be pre-determined traits. However, they may arise dynamically during
the transmission process. Specifically, while infectiousness may be an inherent trait of the recipient
(‘recipient-dependent’), it may instead be determined by the donor host that infected them (‘donor-
dependent’). We investigated how the effects of heterogeneities on transmission are affected by
these contrasting scenarios by analysing two ‘Susceptible-Infected” models for three metrics: the basic
reproduction number (Ro), changes in heterogeneity, and equilibrium host abundance. We show that
the primary driver of Ro differs between the two scenarios: covariance between susceptibility and
infectiousness for recipient-dependent, versus maximum infectiousness for donor-dependent.
Consequences for equilibrium host abundance also differed, but changes in heterogeneity did not.
Our results show that these scenarios change epidemiological dynamics and should be considered

when exploring the consequences of host heterogeneity on transmission.
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Introduction

Individuals can vary substantially in their propensity to be infected by, and to transmit, parasites
(VanderWaal & Ezenwa 2016). This individual-level host heterogeneity can have significant effects on
the transmission of parasites, and so affect the dynamics of transmission and patterns of infection in
host populations (Woolhouse et al. 1997; Lloyd-Smith et al. 2005). One example of this is
superspreaders — hosts that are disproportionally responsible for transmission of an infection in a
population (Lemieux et al. 2021). Transmission heterogeneities can arise through variation in one or
more epidemiologically-relevant host traits. Specifically, parasite transmission is a function of host
susceptibility (the host’s propensity to become infected following parasite exposure), host
infectiousness (the capacity of an infected host to transmit parasites), and host contact rate (the rate
of transmission-relevant contacts, dependent on the transmission mode of the parasite in question)

(McCallum et al. 2017).

Among-host variation in these traits can alter parasite transmission dynamics in a host population
(Dwyer et al. 1997; Barlow 2000; Matthews et al. 2006; Streicker et al. 2013; Stephenson et al. 2017).
For example, modelling has shown that heterogeneity in susceptibility can reduce parasite
transmission (Coutinho et al. 1999), heterogeneity in host infectiousness can increase variability in the
probability that an epidemic will occur (White et al. 2018), and heterogeneity in contact rate can slow
transmission speeds and reduce overall epidemic severity (Kong et al. 2016). Importantly,
heterogeneities in these host traits can exist simultaneously, and potentially covary, raising the
guestion of how these so-called ‘coupled heterogeneities’ (Vazquez-Prokopec et al. 2016) affect
parasite transmission. Previous modelling has shown both that multiple host heterogeneities can
affect transmission dynamics, as can interactions between them (Yates et al. 2006; Miller 2007;
Hickson & Roberts 2014). Indeed, covariation between host heterogeneities can both raise and lower
the basic reproduction number, Ry, depending on the traits involved and whether the covariation is

positive or negative (Vazquez-Prokopec et al. 2016; Lloyd et al. 2020).
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How individual-level epidemiologically-relevant traits are determined has been generally ignored, yet
is fundamental to understanding the effect of coupled heterogeneities on parasite transmission. In
particular, there has been little consideration of how a host’s infectiousness is determined, and the
potential consequences of different determinants of infectiousness. Considering transmission from an
infected donor host to a susceptible recipient host, there are two main scenarios by which the
subsequent infectiousness of the newly-infected recipient host is determined. First, ‘recipient-
dependent’ (RD), where the recipient host’s infectiousness is a fixed, pre-determined characteristic of
that individual, as might occur when host genotype determines infectiousness. Second, ‘donor-
dependent’ (DD), where the recipient host’s subsequent infectiousness is determined by the donor
host that infected them; for example, if the parasite load received from the donor host determines
the recipient host’s subsequent infectiousness, such that highly infectious hosts tend to generate
other highly infectious hosts (Beldomenico 2020; Wanelik et al. 2023). These different scenarios are
likely to lead to different patterns of host infectiousness in a population, and so affect transmission,
but most modelling studies of the impacts of host heterogeneity do not explicitly consider what
determines host infectiousness. The majority implicitly assume RD, for example by pre-assigning
susceptibility and infectiousness values to individuals (e.g., Coutinho et al. (1999); Yates et al. (2006);
Miller (2007); Lloyd et al. (2020)), although occasionally DD-like scenarios have been used (Wanelik et

al. 2023).

How the determination of host infectiousness mediates the effects of host heterogeneities on
population-level parasite transmission has not been tested. We explore this by focusing on
heterogeneities in host susceptibility and infectiousness. These two traits are likely to be determined
by similar physiological and immunological mechanisms, and thus likely to be more closely linked with
each other than with host contact rate (Stewart Merrill et al. 2021). We develop two Susceptible-
Infected (SI) compartmental models that incorporate heterogeneity in susceptibility and
infectiousness, one with the RD scenario, the other with the DD scenario. We analyse these models to
determine how the different ways in which infectiousness is determined affect the relationship

4
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between host heterogeneities in susceptibility and infectiousness, population-level parasite
transmission, and effects on host population dynamics. We show that how infectiousness is
determined can have substantial effects on parasite transmission, particularly in the driver of the

driver of the basic reproduction number (Ro).
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Material and methods

Model Framework

The standard density-dependent SI model in a homogeneous population of size N divided into

susceptible (S) and infected (I) sub-populations (Anderson & May 1991) is given by

a3 = bN — BSI — dS 1
t ) ( )
! = BSI—(d + a)I 2
t ) ( )

where N =S + 1, b is the birth rate, d the baseline mortality rate, and a the parasite-induced
mortality rate. The transmission coefficient 8, while often written as a simple constant, actually
incorporates both contact rate (k) and infection probability given a contact (v) (Begon et al. 2002),

yielding

B = kv. 3)

The infection probability v can be further partitioned into the product of recipient susceptibility (o)

and donor infectiousness (i),

v =oay €))

where ¢ and ( take values in [0,1], with higher values representing greater susceptibility or greater
infectiousness, respectively. Thus, host heterogeneity in susceptibility and infectiousness can be
incorporated by dividing the population into sub-populations comprising individuals that share the
same values of susceptibility and infectiousness. Precisely how this is done depends on whether

infectiousness is determined by a RD or DD scenario.
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Recipient-dependent (RD)

Under this scenario recipient hosts are assigned to an infected sub-population based on a fixed, pre-
determined trait inherent to that individual. Supposing that there are n unique pairs of trait values
(0j,4), 1 < j < n, we divide the population into n susceptible sub-populations S;, and n infected sub-
populations [;, where the jth sub-populations share the jth trait pair. Thus, a RD heterogeneous

analogue of Equations (1)-(2) is

ds; BN

d; -

= k05, Z ol — (d+ @), 6)
m=1

where we have additionally assumed that birth rate b, baseline mortality rate d, and parasite-induced
mortality rate a, are equal across sub-populations. For the sake of simplicity, births are evenly
distributed across susceptible sub-populations, effectively assuming non-inherited host
heterogeneity, a phenomenon that has been previously observed, for example in Daphnia magna
(Ben-Ami et al. 2008). We emphasise that in the RD scenario, the fixed traits of individuals determine
the susceptible and infected sub-population to which they belong, so that all individuals in a

susceptible sub-population move to the same infected sub-population upon becoming infected.

Donor-dependent (DD)

In this scenario, recipient hosts acquire their infectiousness trait when they become infected. Like in
the RD scenario, we divide the susceptible sub-population into ng sub-populations §;, each with
susceptibility gj, 1 <j <ng. Under the DD scenario, however, individuals are assigned the

infectiousness of the donor host that infected them. We therefore define I; ;. to be those individuals
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with susceptibility o; that were infected by an individual with infectiousness t, 0 < k < n;, and so

now share that same infectiousness value. Thus a DD heterogeneous analogue of Equations (1)-(2) is

n ns
dS; bN
Pr n—S — K0;S; z Z timlim — dS;, @)
m=1I1=
dl;
7 = KO'jlijz Il,k - (d + a)Ij,k. (8)
=1

b, d and a are again assumed to be equal for all infected sub-populations. Unlike the RD model, the
infected sub-population that the recipient host will join is not pre-determined before infection, so
individuals in the same susceptible sub-population do not always move to the same infected sub-
population upon infection. As such, the DD model has ng susceptible sub-populations and ngn;
infectious sub-populations, whereas the RD model has equal numbers of both susceptible and infected

sub-populations.

Equations (7)-(8), which will be useful when quantifying population-level heterogeneity, can be
simplified by defining I,, = Z?ﬁl lj , i.e., the sum of all individuals with the same infectiousness value,

regardless of their initial susceptibility value. Summing Equation (8) over 0 < j < ng yields

EJ_N_M.S.ZL Iy — dS;, ©)
dt Ng e 1 mem J
m=
ns
dl
d_: = Kyl z Om Sm - (d + a)Ik, (10)
m=1

describing the dynamics of all infected individuals with infectiousness . This form of the system is
useful if the prior susceptibility of infected individuals is unimportant, for example when calculating
Ro. Note that we have used the same notation in the RD and the DD models to define similar but not
precisely equivalent variables, and therefore we rely on context to provide clarity about which is being

referred to throughout the remainder of this work.
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Quantifying population-level heterogeneity

We quantified population-level heterogeneity (hereafter referred to simply as ‘heterogeneity’) after
(Laliberté & Legendre 2010), which is applicable to a wide range of systems and can deal with multiple
traits and missing values (Olusoji et al. 2023). We undertook heterogeneity calculations in the context

of two-dimensional g, t trait space, in which susceptibility () and infectiousness (t) form the two axes.

We first calculated the abundance-weighted centroid (c, hereafter referred to as the ‘centroid’) of the
population, given simply as the population mean of each trait (¢ and i, Figure 1A & C). We then
calculated the heterogeneity score, h, by finding the mean abundance-weighted, Euclidean distance
to the centroid (e.g. z; in Figure 1B, z;; in Figure 1D) of all sub-populations. We calculated initial
heterogeneity using the initial abundances of the sub-populations and final (equilibrium)

heterogeneity using equilibrium sub-population abundances.

The calculation of heterogeneity differs between the RD and DD scenarios in how sub-populations
were grouped, and abundances calculated. Specifically, for RD, all individuals in the same susceptible
sub-population move to the same infected sub-population, and so we summed the abundances of the
corresponding susceptible and infected sub-populations. These grouped sub-populations were then
used to calculate h. For DD, each infected sub-population’s Euclidean distance to the centroid was
calculated using both its ¢ and ¢ values (e.g. I;; in Figure 1D) while, because susceptible sub-
populations only had a o value, their distance to the centroid was calculated in a single dimension
(e.g. S; in Figure 1D), and so there were no grouped sub-populations used in calculating h. The
formulae for heterogeneity calculations for both the RD and DD scenarios can be found in the

Supplementary Information (Sl).

Model Analyses

We analysed both the RD and DD scenarios under three heterogeneity contexts:
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1) Bipartite heterogeneity
Where the population is divided into sub-populations corresponding to two distinct pairs of
susceptibility and infectiousness values.

2) Tripartite isometric heterogeneity
Where the population is divided into sub-populations corresponding to three distinct pairs of
susceptibility and infectiousness values, equidistant from each other in g, ( trait space.

3) Tripartite non-isometric heterogeneity
Where the population is divided into sub-populations corresponding to three distinct pairs of
susceptibility and infectiousness values, but which are not necessarily equidistant in g, ¢ trait

space.
Here we present analyses relating to context 1; contexts 2 and 3 are presented in the SI.

For all quantitative analyses we set the initial number of susceptible sub-populations to 49 and the
number of infected sub-populations to % (RD) or ni (DD). Initial mean population susceptibility and
S

infectiousness trait values were 0.5; thus 0, = 1 — 0y and t, = 1 — ;. All other parameter values
were the same for all analyses (Table 1). By varying o; and t;, we varied the initial population
heterogeneity while maintaining the same initial mean population trait values. Hence, the effects of
changing heterogeneity were decoupled from the effects of changing initial mean population trait

values.

We generated 2,601 unique combinations of ¢ and ¢ trait values, and used these to analyse both the
RD and DD models to understand how heterogeneity in susceptibility and infectiousness affected
three key descriptors of epidemiological dynamics: (i) the basic reproduction number (Ro), a measure
of epidemic potential (Anderson & May 1991), (ii) the change in heterogeneity between the initial and
final state of the system, indicating how heterogeneity changes with epidemic progression; and (iii)
the equilibrium host population abundance, which quantifies the impact of the parasite on the host

population.

10
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Calculating R

Ro predicts the risk of an epidemic occurring, as well as the size and severity of that epidemic
(Anderson & May 1991; Heffernan et al. 2005) and also the effort needed to control and eliminate a
parasite from a population (Roberts 2007). Thus, understanding the effect of heterogeneity on Ry
provides considerable insight into how host heterogeneity in susceptibility and infectiousness affects

parasite transmission through a population.

We calculated Ry using next generation matrices (Diekmann et al. 2010) (shown in full in the SI) for

the two different scenarios, as:

RD:
n
K
RO :mz O-jthj' (11)
j=1
DD:
ns
Klmax
RO = mzl O']'Sj, (12)
]:

where (;,,x is the maximum infectiousness value across all sub-populations.

Equilibrium Analyses

When possible we calculated the equilibrium solutions of Equations (5)-(8) analytically. For parameter
values for which this was not possible, we solved the system numerically over 50,000 time steps, which
was sufficiently long to reach equilibrium. Any sub-population with susceptibility ¢ =0 (i.e.,
completely resistant to infection) experiences unbounded growth, and so such cases were omitted

from equilibrium analyses.

11
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We also used these equilibrium solutions to calculate equilibrium population-level heterogeneity
(following the method described above) to test whether the population-level heterogeneity changed

with epidemiological progress.

Software packages

Plots were generated in R (R Core Team 2022) using packages ggplot2 (Wickham 2016), ggforce
(Pedersen 2022a), scales (Wickham & Seidel 2022), showtext (Qiu 2022), pBrackets (Schulz 2021),
patchwork (Pedersen 2022b) and latex2exp (Meschiari 2022). Equilibrium analyses were conducted
using Mathematica (Wolfram Research Inc. 2022). Heterogeneity and R, values were calculated in R

(R Core Team 2022).
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Results

Here we present the results for the analyses of the bipartite heterogeneity context. The results for the

other contexts were broadly consistent with those of Scenario 1 and are described in the SI.

(i) Heterogeneity and R,

Recipient-dependent

Depending on the population-level covariance between susceptibility and infectiousness values, Ro
may increase (Figure 2A, red points), decrease (Figure 2A, blue points) or remain the same as the
homogenous case (Figure 2A, yellow points) as heterogeneity increases. Mapping Ry values onto o,
trait space (Figure 2B), where the two subpopulations are mirrored across the centre point (o, = 1 —
oy and 1, = 1 — 1), shows that Rgremains unchanged from the homogeneous state (h = 0), even at

high levels of heterogeneity, if that heterogeneity is in one trait only (Figure 2B yellow shading).

When there is positive covariation between susceptibility and infectiousness, Ro increases relative to
the homogenous state (Figure 2B, Supplementary Equation (S13)). The largest R, value occurs when
one sub-populationhas maximal infectiousness and susceptibility values of 1, while the other sub-
population has values of 0 for both; i.e., the sub-populations lie at extremes of the positive diagonal
in g, trait space (Figure 2B). Conversely, when there is negative covariation between susceptibility
and infectiousness Ry is reduced relative to the homogenous case (Figure 2B). In the extreme case,
when one sub-population has an infectiousness value of 1 and a susceptibility value of 0 (completely
resistant hosts), and the other sub-population has a susceptibility of 1 and infectiousness of 0
(completely dead-end hosts), such that they lie at extremes of the negative diagonal in o, ( trait space,

no individuals can both be infected and transmit onwards, resulting in an R, value of 0 (Figure 2B).

The bifurcating distribution of points that occurs at high heterogeneity (Figure 2A) is due to the

boundaries of g, ( trait space that necessarily restrict the number of possible trait combinations (i.e.,

13
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where both susceptibility and infectiousness values lie between 0 and 1 for all sub-populations) at
higher levels of heterogeneity. At maximum heterogeneity there are only two possible configurations
of the two sub-populations in o, trait space, lying at the opposite extremes of the diagonals in o,

trait space, resulting in just two points (Figure 2A).

In summary, increasing heterogeneity in the RD scenario can lead to increasingly divergent R, values
compared to the homogeneous simulation, where the direction of this divergence (positive or
negative) is determined by the population-level covariance between susceptibility and infectiousness.
When that covariance equals zero (heterogeneity in either susceptibility or infectiousness, but not

both) then Ry is unchanged even as heterogeneity increases.

Donor-dependent

The DD scenario produces different results from the RD scenario. The overall pattern is that increasing
heterogeneity does not reduce Ry relative to the homogenous case (Figure 2C), and more generally
that heterogeneity does not influence Ro. In particular, changes in susceptibility alone do not affect

Ro, whereas changes in infectiousness do (Figure 2D).

The driver of Ry is the maximum infectiousness value in the population (Figure 2C, Supplementary
Equation (S13)). Ro is independent of susceptibility because, assuming equal susceptible sub-
population sizes, it has a fixed mean value across the population (details in Sl). Ro changes only along
the infectiousness axis (Figure 2D), but not along the susceptibility axis. This means that while
heterogeneity can be increased by changing susceptibility trait values, Ro will stay the same as in the
homogenous case in the absence of changes in infectiousness. Equally, for the same overall degree of

heterogeneity (i.e., vertical slice in Figure 2C) an increase in heterogeneity in infectiousness (and
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therefore a necessary decrease in heterogeneity in susceptibility) increases Ro. Susceptibility can only

affect Ro when the initial susceptible sub-population abundances are not equal (see SI).

Model comparison

In summary, both the RD and DD scenarios show that increasing heterogeneity can lead to increasingly
divergent Ry values compared to the homogeneous case, but that the driver of those Ry values differs
between the two scenarios. In the RD scenario, Ry is driven by covariation between susceptibility and

infectiousness; in the DD scenario Ry is driven by the maximum infectiousness in the population.

(ii) Change in heterogeneity

To understand how epidemic progress affects population-level heterogeneity we compared initial
heterogeneity and its value at equilibrium. For both the RD and DD scenarios there is generally very

little change in population-level heterogeneity throughout the epidemic (Figure 3).

(iii) Host abundance

Equilibrium total host abundance generally increases with increasing initial heterogeneity, as does the
variability in equilibrium abundance, in both the RD and DD scenarios (Figure 4). However, the specific

aspects of these relationships differ between the two scenarios.

Recipient-dependent

Here there is a complex relationship between initial heterogeneity and host equilibrium abundance

(Figure 4A). Equilibrium abundances are grouped into parabolic ‘clusters’ where each cluster has
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increasing and decreasing equilibrium abundances that diverge from a baseline abundance as
heterogeneity increases. These clusters are determined by the minimum susceptibility value in the
simulation; each simulation in a cluster has the same population-level minimum susceptibility value
(and therefore also the same maximum susceptibility value). Clusters are ordered based on these
minimum susceptibility values; those with the lowest minimum susceptibility values have the highest
abundances. This is because in populations with low minimum susceptibility values fewer individuals
become infected, so that fewer hosts are exposed to parasite-induced mortality («), thus increasing

overall host abundance.

The within-cluster divergence seen with increasing heterogeneity is because of increasingly divergent
infectiousness values in the population. In g, t trait space, all the simulations within a cluster have the
same pair of o values for the two sub-populations in the population, so that an increase in
heterogeneity is achieved by divergence in the two infectiousness values. This divergence, and thus
increase in heterogeneity, leads to changes in Rp within a cluster that subsequently impacts
equilibrium host abundance; high R values lead to lower abundances (the lower red tail of a cluster
in Figure 4A), while low Rp values lead to higher abundances (the upper blue tail of a cluster in Figure

4A).

Donor-dependent

In this scenario there are also clusters determined by the minimum susceptibility value within a
simulation, but these clusters are near-vertical lines, suggesting that heterogeneity has little effect on
equilibrium host abundance (Figure 4B). Consistent with the RD scenario, within-cluster host
equilibrium abundance is maximised when Ry is minimised, which occurs at the lowest maximum
population-level infectiousness value. Increasing maximum infectiousness for a given cluster increases

Ro, and so reduces equilibrium host abundance. The DD scenario generally shows a lower maximum

16
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Discussion

Our results show that the process by which host infectiousness is determined, specifically whether it
is RD or DD, affects the relationships between host heterogeneity in susceptibility and infectiousness
and epidemiological outcomes. While existing theory shows that host heterogeneity in susceptibility
and infectiousness can affect population-level parasite transmission (e.g. Lloyd et al. (2020)), our

findings clarify that these effects differ considerably between RD and DD scenarios.

We find that while Ry changes with increasing heterogeneity in both scenarios, there is a notable
contrast between the two scenarios in both the drivers and direction of those changes. The RD
scenario shows divergent R, values as heterogeneity increases, determined by the covariance
between susceptibility and infectiousness. This finding is supported by previous modelling: three
models of vector-borne infections, where infectiousness was an inherent host trait, i.e. RD,
incorporated host heterogeneity in susceptibility and infectiousness and found that positive
covariance between heterogeneities led to an increase in Ry relative to the homogeneous case, while
negative covariance led to a decrease (Dietz 1980; Koella 1991; Vazquez-Prokopec et al. 2016). Thus,
they showed that in a RD scenario population-level covariance between susceptibility and

infectiousness determines Ry, consistent with our findings.

In contrast, we find that the DD scenario results in Ry values that are determined by the maximum
infectiousness in a population, such that Ry increases as heterogeneity in infectiousness increases.
Heterogeneity in susceptibility is largely irrelevant for the DD scenario, only becoming relevant if
abundances are markedly different between sub-populations. Though there are fewer other studies
that consider DD-like scenarios, one example is the hypothesis that the SARS-CoV-2 transmission
pattern may be due to superspreaders tending to generate new superspreaders, for example through
a dose-dependent effect (Beldomenico 2020). A model exploring how R, responded to the scenario
described in Beldomenico (2020) compared to the null model in which superspreaders appeared

randomly, showed that Ry increases with an increase in the probability that a superspreader generates
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additional superspreaders (Wanelik et al. 2023). Thus, moving from the null model to a DD-like
scenario increased Ry, suggesting that the DD scenario tends to increase Ry, which aligns with our

findings.

Counterintuitively, we did not find a noticeable divergence between the RD and DD scenarios in how
population-level heterogeneity changed during an epidemic. In the DD scenario we expected to see a
loss of heterogeneity over time because the infected sub-population with the highest infectiousness
value in the population becomes dominant as the epidemic progresses, ultimately excluding less
infectious donors. However, heterogeneity is calculated by taking the mean abundance-weighted
distance of the sub-populations to the centroid. Thus, despite the DD scenario losing infected sub-
populations at equilibrium (and leading to maximally infectious hosts over time), the weighting of the
heterogeneity score with the generally larger susceptible sub-populations ensures that there is no

considerable loss in heterogeneity at equilibrium.

In contrast, the consequences of heterogeneity for equilibrium total host abundances are different
between the two scenarios. While in both the RD and DD scenarios host abundance tends to increase
with increasing heterogeneity, heterogeneity has less influence on the equilibrium host abundance in
the DD scenario, compared to the RD scenario. Furthermore, for a given susceptibility value (i.e.,
within a cluster) the infectiousness scenario determines whether there are divergent (RD) or
monotonic (DD) changes in equilibrium host abundance, a pattern that becomes more pronounced at

higher levels of heterogeneity.

Empirical examples matching assumptions of the RD scenario include the finding that canaries’
nutritional status can affect their subsequent infectiousness with avian malaria (Cornet et al. 2014),
rabbit myxoma virus infection status determines its infectiousness for co-infecting nematodes
(Cattadori et al. 2007), as well as several examples of different host strains exhibiting varying levels of
infectiousness when infected with the same parasite isolates (Bolas-Fernandez & Wakelin 1989;

lgrgensen et al. 1998; Dorfman et al. 2024). Genetic variance in host infectiousness was then
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definitively demonstrated in Scophthalmus maximus (Turbot) infected with a ciliate parasite (Anacleto
et al. 2019). An example of the DD scenario comes from calves that were infected with three different
doses of bovine viral diarrhoea virus (BVDV) where the most infectious were those given the highest
viral dose, due to a longer infectious period (Strong et al. 2015). Similar patterns have been found with

a number of other host-parasite systems (Gaskell & Povey 1979; Mumford et al. 1990; Zarkov 2012).

In reality, host-parasite systems are unlikely to be fully described by either the RD or DD scenarios,
instead likely falling somewhere between the two. For instance, though the calves challenged with
the highest dose of BVDV had a higher infectiousness than other treatments, there was still within-
dose group heterogeneity in infectiousness (Strong et al. 2015). This within-group heterogeneity may
have been caused by traits inherent to the individual calves, suggesting that while this host-parasite
system might be best described by DD infectiousness there are still aspects of RD infectiousness at
play. The reverse can also be true. For example, although myxoma-infected rabbits may be more
nematode infectious (Cattadori et al. 2007), aligning with RD infectiousness, there may still be some
DD infectiousness involved. Specifically, the nematode spreads to other hosts when its eggs are
released into the environment in a rabbit’s faeces, hatch into larvae and are then eaten by another
rabbit (Cattadori et al. 2007). So, there is a chance that a rabbit will become more infectious when it
is infected by a rabbit with a high infectiousness, because a highly infectious rabbit is likely to leave
many nematode eggs to hatch in a patch of the environment, potentially leading to many of those
larvae infecting the same host at the same time. If that is the case, then the susceptible rabbit would
become highly infectious in turn. Therefore, in most cases Ro will be affected by both the covariance
between susceptibility and infectiousness as well as the maximum infectiousness in the population,
though which of these two measures is more influential will depend on where on the spectrum of RD

to DD that specific host-parasite system exists.

Previous work has typically treated the infectiousness determination process as a black box, generally

assuming it is a fixed, pre-determined property of the recipient host, overlooking its potential
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importance in influencing the effects of host heterogeneity on parasite transmission. Yet this process
can have real-world consequences. For instance, there is interest in breeding parasite resistant
livestock to reduce the substantial economic and climatic costs caused by parasites in livestock
systems (Knap & Doeschl-Wilson 2020). However, it will be important to consider how infectiousness
is determined in the specific host-parasite system of interest, as it might be necessary to select for
different traits in the livestock depending on where the host-parasite system falls along the
infectiousness determination spectrum. For example, breeding for reduced parasite susceptibility in a
RD scenario (i.e., resistance), versus focusing on reducing parasite shedding in a DD scenario. We have
demonstrated the importance of explicitly considering the way in which infectiousness is determined,
showing that ignoring it could lead to an incomplete understanding of the effects of host
heterogeneities on parasite transmission. A failure to do so could have consequences for both future

theoretical and empirical work.
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533  Table 1. Parameter definitions and values for all analyses of the RD and DD models.

Model parameter Definition

K Contact rate per individual per time

b Birth rate per time

d Mortality rate per time

a Parasite-induced mortality rate per time

534

Value

0.5

1.5
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Figure 1. Schematic representation for calculating heterogeneity for the RD (A, B) and DD (C, D)
scenarios. For both the RD and DD scenarios the population mean susceptibility (6) and population
mean infectiousness () are calculated in a single dimension (A and C). The sizes of the black dots
indicate the relative abundances of the relevant sub-populations. (B) Heterogeneity for the RD
scenario is the mean Euclidean distance (z;), weighted by the abundance of each sub-population, to
the centroid (c). (D) Heterogeneity for the DD scenario is the mean of the Euclidean distances (z;;) of
the infected sub-populations to the centroid, and the single dimension distance (o) of the susceptible
sub-populations, weighted by the abundance of each sub-population; here the values for S;and S,
form lines rather than points in g, t trait space because they have no infectiousness values. In all panels

the diameters of the black circles represent the abundance of the sub-population.

Figure 2. The effect of initial heterogeneity on R, for the RD (A, B) and DD (C, D) scenarios. The dotted
line in (A, B) is where Ry = 1. For RD (A) Rp can change as initial heterogeneity increases, and with the
covariance between susceptibility (o) and infectiousness (t), as indicated by the colour bar. (B) shows
Ro (the colour scale) plotted in o, trait space with the centroid (c) at 0 = t = 0.5, and concentric
dashed-line circles showing heterogeneity; the positions of the sub-populations are mirrored across
the centroid (o0, =1 — 07 and 1, = 1 — ;). For DD (C) Ry does not change as initial heterogeneity
increases, but scales with maximum infectiousness (t,2x), as indicated by the colour bar. (D) is the DD

version of panel (B), but note that the Ry scales differ between (B) and (D).

Figure 3. Change in heterogeneity from the initial sub-population values to their equilibrium values
(the dotted line shows y = x in both panels). (A) RD scenario, (B) DD scenario. Each point represents

one simulation; points are light grey, such that darker points represent multiple, overlapping points.
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Figure 4. Effect of initial heterogeneity on equilibrium total host abundance. (A) RD, (B) DD. In both

panels the colour bar shows the Ry value for each simulation, corresponding to the outline of each

point, and the greyscale bar shows the minimum population-level susceptibility value corresponding

to the fill of each point.
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