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Integrated sensing and communication (ISAC) is considered one of
the key technologies for the 6G network. In this letter, we propose a
fair resource allocation method for the unmanned aerial vehicle (UAV)
enabled communication network, where UAV are equipped with ISAC
equipment to serve multiple users and targets. In order to achieve both
fair communications and sensing, the resource allocation problem is
formulated as maximizing the fairness index under the total power con-
straint, which is a typical non-convex optimization problem. Then, we
propose the modified noise DDPG method to derive the power alloca-
tion. Finally, the simulation results verify the effectiveness of the pro-
posed method compared with the benchmarks.

Introduction: Communication and sensing are considered to be the two
fundamental functions of the sixth generation communication system
(6G). Integrated sensing and communications (ISAC) realizes the coor-
dination of sensing and communication functions with the software and
hardware resource sharing, and has aroused great research interest in the
academic community. Meanwhile, UAV becomes an important platform
for the realization of 6G ISAC for its flexibility and controllability prop-
erty [1].

The existing researches mainly focus on improving the overall per-
formance of the UAV-ISAC systems by resource allocation. The authors
in [2] maximized the safety of system by optimizing user scheduling,
transmission power, and UAV trajectory. The authors in [3] studied the
impact of UAV location deployment on the performance of ISAC sys-
tems. The authors in [4] studied the target tracking scheme in the UAV-
ISAC system. In [5], a new ISAC framework was proposed ,while the
perceptual signal-to-noise ratio and the system throughput were maxi-
mized by jointly optimizing user association, transmission power, and
UAV trajectory. In [6], deep learning method was used to maximize the
sum of normalized sensing rate and normalized communication rate.

Although the current researches can greatly improve the overall per-
formance of ISAC systems, the issue of system fairness for sensing and
communication functions is often overlooked in their design. Resource
allocation is a complicated optimization problem, and artificial intelli-
gence provides an effective way for UAV enabled ISAC system. In this
letter, we propose a resource allocation method for UAV enabled ISAC
system. In order to achieve both fair communication and sensing, the
fairness index is maximized under the total power constraint. Then, we
exploit the deep reinforcement learning (DRL) method to solve the non-
convex optimization problem. Sacrificially, we propose a learnable pol-
icy noise network for DDPG to derive the power allocation. Finally, the
simulation results prove the effectiveness of the proposed algorithm.

System model: We consider a square area with a side length of D, where
UAV serves as air ISAC base station (BS). Specifically, the UAV flies to
the target area and then dynamically allocates resources to the randomly
distributed NV ground users and M targets.

The probability of line of sight (Los) for the ground user n €
N{1,2,---,N}is
1
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where d,, () is the distance between UAV and the ground user n at time
t, h is the hovering height of the UAV, and a, b are environment related
constants.

There is a significant difference in path loss between line of sight
(Los) and non line of sight (NLos). The path loss of the Los L,%"S (1)
and NLos LY 195 (t) between the UAV and ground user n at time ¢ can
be derived as

) + gLos’ (2)
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where c is the speed of light, f. is the signal carrier frequency, and &7.o
, N Los are the additional losses under Los and NLos.

Then, the path loss from the UAV to ground user n at time ¢ can be
expressed as
Ly (1) = Py () Ly (1) + (1 = Py () Ly (). (4)
According to Equ. (4),the received power pj, (¢) at ground user n can
be expressed as
10log 1ol (1) =Ln (1)
10

pp(t) =10 , ®

where p!, (¢) is the power that transmitted from UAV to ground user n
at time ¢.

Meanwhile, the communication sum rate of the UAV to ground user
n attime ¢ is

P, (1)
0—2

Ry (1) =log, (1 + )s (6)
where o2 is the noise power.

In information theory, MI stands for mutual information, which is
an important concept used to quantify the dependency relationship or
shared information between two random variables[7]. Therefore, we
exploit the radar MI as the sensing indicator, and then the MI from the
UAV to the target m € M{1,2,---, M} can be expressed as

P (1)
Rm(t)=10g2(1+%), (7)
where p;, (1) is the received power of the target m by the UAV.

During the sensing process, the signal needs to travel back and forth,

so the path loss L,, (¢) and received power p;,, (¢) can be expressed as

L (t) = PEOS()LES (1) + (1= PEOS () LY (1), (8)

10l0g1o Py (1) =2Lm (1)
10
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where pl, (¢) is the transmitted power from the UAV to target m.

Problem formulation and solution: Ignoring fairness would keep edge
users and targets at low communication rates or MI. The maximization
of the ISAC performance can lead to a tilt in power allocation. For exam-
ple, the system would allocate more power to users who are closer to
UAV to obtain greater communication sum rate. Therefore, we propose
the fairness index to overcome the distance effects. Then, the communi-
cation fairness index f€°™ (¢) and the sensing fairness index f”¢< (t)
can be respectively derived as

F(t) = (10)

fa(t) = ——, (1)

12

S (1) = ————. (13)

In the ISAC system, it is necessary to ensure both communication
fairness and sensing fairness. Therefore, we define the system fairness
index as

F35(t) = min(£9O"(2), £7(1)). (14)
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Then, the spectral efficiency that reflects the overall performance of
the ISAC system can be obtained as

N M
we Y Ry(t) +wg ¥ Ry(t)
m=1

S(1) = —" , (1)

where w. and w;y respectively represent the emphasis coefficients of
communication and sensing.

Under the principle of fairness, the optimization objective can be
defined as

max  fY5(r) (16)
Ph(1),pin ()
N M
St Y PR+ Y Phu(t) = Prorar (17)
n=1 m=1
S(I) > Smin (18)
Ph(t) 2 Pmins Pru () 2 Pmin (19)

where Piorqr and ppin, are the total power and the minimum power
allocated to each user respectively, and S,,,;,, is the minimum spectral
efficiency. The optimization problem is non convex, which is difficult to
solve through traditional convex optimization.

MDP model for power allocation: DRL is based on Markov decision
processes (MDP), which optimizes (s, a, r, s”) and maximizes the Bell-
man equation to get the cumulative reward. MDP is usually defined by
(S, A, P,R,y),where S is the state space, A is the action space, P is
the state transition matrix, R is the reward space, and 7 is the discount
factor which represents the agent’s emphasis on future rewards.

The process of user and target movements can be expressed as a MDP
model. Specifically, the user and target will upload its own location to
the UAV through global positioning system (GPS). The UAV will then
calculate the distance to the user or target based on its own location. The
state needs to include the topological situation within the current region,
so the state s; can be defined as

s; = (di(2),da(t), -+ ,dmn (1)), (20)

where the first N elements are the distance from the ground users to the
UAV, and the last M elements are distance from the targets to the UAV.

The action a, represents the power allocation strategy for the state at
time ¢ can be expressed as

at:(pi(t)’pé(t)s !p5\4+N(t))’ (21)

where the first N elements are the power allocated to ground users, and
the last M elements are the power allocated to targets.

We define r; as the reward for the resource allocation strategy under
the current topology state. Due to the inability to maximize the fairness
index and spectral efficiency simultaneously, we use @ and 8 to empha-
size different degrees of spectral efficiency and system fairness during
model training to meet the demand for fairness in different scenarios,
which is given by

re=aS(t) + B (). (22

DDPG Method: DDPG is an advanced version of Actor-Critic method.
Actor networks can output actions and learn a good strategy. The critic
network could learn a value function to determine which action is good
in the current state. The copies of the actor network and critic network
are created as the target actor network and target critic network, which
improves the stability of neural network training. The update of the
target network adopts a soft update method, which slowly updates the
parameters of the target network.

Denote 64 and 6" as the parameters of actor network and the actor
target network respectively, while 2 and 62" as the critic network
parameters and the critic target network parameters, respectively. For
the update of Critic network, we define its loss function as

1 , , . ,
J(09) = <= > 1+ yQ (s 1 (sia | 04| 09)
s

- O(si,a;| 69)]7, (23)

where Nj is the batch size of data sampled from the experience replay
memory, u’ (si+1] O#) is the estimation for the actor target network’s
policy of the next state, Q (s;, a;) is the value function. Then, the actor
network could update the gradient objective function by gradient ascent,
which is given by

Voupu(sil 64).
24)

VJ(0") =NLZI. VaQ(s,al 69)]

s=si,a=p(si)

The Proposed Noise DDPG Method: In order to enable the agent to
achieve more comprehensive learning, we exploit noise to increase
exploration. Compared to adding noise to the output of the actor net-
work, adding parameterized noise to the weights of the neural network
can achieve more comprehensive exploration. The framework of the
modified DDPG is shown in Fig. 1, where a learnable strategy noise
is added to the fully connected layer of the actor network for explo-
ration. The algorithm that combines this strategy noise can be named as
Noisy DDPG. Specifically, the parameters can be learned through gra-
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Fig 1 The frame work of Noise DDPG

dient descent to achieve end-to-end adjustment for the adaptive noise
method. The actor network needs to learn both the network parameters
and the variance of generated noise, which is given by

Xk = wxs+b, (25)

where y; and y represent the input and output, respectively, w is the
weight matrix, and b is the bias vector.
After applying parameterized noise, we can obtain

Xk = (Mo + Tw © 8u)Xs + b+ Tp O &p, (26)

where w and b are parameterized with noise values, w ~ N (e, 0w ),
b ~ N(up, op). Moreover, £,.p ~ N(0,I) is the sampled Gaussian
noise. At this point, the neural network needs to adaptively adjust by
learning the mean and variance of noise.

The computational cost associated with the network will escalate
rapidly as the size of the network increases. Decomposing Gaussian
noise not only reduces the number of noise samples, but also lowers
computational. Specifically, the number of neurons in the previous layer
and the next layer is set to s and k, respectively. Each neuron gen-
erates an independent unit Gaussian noise as &;,i € [1,2,---,s],
€j,j € [1,2,---,k]. Then, the noise added to the neural network
parameters can be represented as

cw=f(g)f(g]), 27)

&p = f(g)), (28)
where f (x) = sgn(x)+/x.

Simulations: In this section, we provide numerical results to validate the
effectiveness of the proposed scheme. The number of ground users and
targets is both 5, and their position is random. The other parameters are
provided in tablel.

The Fig.2 displays the comparison between the Noise DDPG and the
traditional DDPG. The final convergence of Noise DDPG is better than
DDPG. Fig.3 shows the performance of Noise DDPG. We can find that
spectrum efficiency and system fairness are contradictory for the pro-
posed method. The reason is that we need to allocate more power to
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Table 1. The imulation parameters.

Parameters Values
Side length D 2000m
Total power Proral 5w
Minimum power to each user pnin 0.02w
Carrier frequency f. 2GHz

Noise power o> 5x 1077w

UAV position (1000m,1000m,500m)
Los additional losses &7.0s 1dB

NLos additional losses €N Los 21dB

Actor network learning rate 1x107*

Critic network learning rate 1x1073
Discount factor y 0.97
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Fig 2 The comparison between Noise DDPG and DDPG.
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Fig 3 The performance of Noise DDPG

users who are closer to the UAV for higher spectral efficiency, which
leads to the decrease of system fairness. At the same time, more power
needs to be allocated to the targets for a larger system fairness, resulting
in a decrease of spectral efficiency. Therefore, it is unrealistic to increase
both spectral efficiency and system fairness simultaneously, and adjust-
ments can be made according to actual needs.

The Fig.4 demonstrates the convergence of the system fairness index
and spectral efficiency when B = 10, 20. The system fairness converges
to 0.89 and 0.94, respectively. The spectral efficiency converges to 13.5
and 11.44, respectively. It can be observed that the agent will adopt cor-
responding emphasis on the system fairness or spectrum efficiency with
the different 3 .
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Fig 4 The system and channel model.

Conclusion: In this letter, we investigated resource allocation method
for the UAV enabled ISAC system with multiple users and multiple tar-
gets. We introduced the radar MI and communication sum rate as the
sensing and communication metric for the ISAC system respectively.
Since the power allocation problem of the UAV-ISAC system consider-
ing fairness was a hard non convex problem, we exploited Noise DDPG
to maximize the system fairness under the total power constraint. Finally,
we provided simulation results to prove the effectiveness of the proposed
method.
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