References:
Abargues, M. R., Giménez, J. B., Ferrer, J., Bouzas, A., & Seco, A., 2018. Endocrine disrupter compounds removal in wastewater using microalgae: degradation kinetics assessment. Chemical Engineering Journal, 334, 313-321. https://doi.org/10.1016/j.cej.2017.09.187
Agüera, A., Martínez Bueno, M. J., & Fernández-Alba, A. R., 2013. New trends in the analytical determination of emerging contaminants and their transformation products in environmental waters. Environmental Science and Pollution Research, 20, 3496-3515. https://doi.org/10.1007/s11356-013-1586-0
Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N. S., & Xu, J., 2017. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. Journal of hazardous materials, 323, 274-298. https://doi.org/10.1016/j.jhazmat.2016.04.045
Ahmed, S. F., Mofijur, M., Nuzhat, S., Chowdhury, A. T., Rafa, N., Uddin, M. A., Inayat, A., Mahlia, T.M.I., Ong, H.C., Chia, W.Y., Show, P. L., 2021. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. Journal of hazardous materials, 416, 125912. https://doi.org/10.1016/j.jhazmat.2021.125912
Appels, L., Baeyens, J., Degrève, J., & Dewil, R., 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755-781. https://doi.org/10.1016/j.pecs.2008.06.002
Azzaz, A. A., Khiari, B., Jellali, S., Ghimbeu, C. M., & Jeguirim, M., 2020. Hydrochars production, characterization and application for wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 127, 109882. https://doi.org/10.1016/j.rser.2020.109882
Babeker, T. M. A., & Chen, Q. (2021). Heavy Metal Removal from Wastewater by Adsorption with Hydrochar Derived from Biomass: Current Applications and Research Trends. Current Pollution Reports, 7(1), 54–71. https://doi.org/10.1007/s40726-020-00172-2
Bala, S., Garg, D., Thirumalesh, B. V., Sharma, M., Sridhar, K., Inbaraj, B. S., & Tripathi, M., 2022. Recent strategies for bioremediation of emerging pollutants: a review for a green and sustainable environment. Toxics, 10(8), 484. https://doi.org/10.3390/toxics10080484
Barakat, M. A., 2011. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361-377. https://doi.org/10.1016/j.arabjc.2010.07.019
Barbosa, M. O., Moreira, N. F., Ribeiro, A. R., Pereira, M. F., & Silva, A. M., 2016. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water research, 94, 257-279. https://doi.org/10.1016/j.watres.2016.02.047
Barrios-Estrada, C., de Jesús Rostro-Alanis, M., Parra, A. L., Belleville, M. P., Sanchez-Marcano, J., Iqbal, H. M., & Parra-Saldívar, R., 2018. Potentialities of active membranes with immobilized laccase for Bisphenol A degradation. International journal of biological macromolecules, 108, 837-844. https://doi.org/10.1016/j.ijbiomac.2017.10.177
Batstone, D. J., & Virdis, B., 2014. The role of anaerobic digestion in the emerging energy economy. Current opinion in biotechnology, 27, 142-149. https://doi.org/10.1016/j.copbio.2014.01.013
Bing, J., Hu, C., Nie, Y., Yang, M., & Qu, J., 2015. Mechanism of catalytic ozonation in Fe2O3/Al2O3@ SBA-15 aqueous suspension for destruction of ibuprofen. Environmental Science & Technology, 49(3), 1690-1697. https://doi.org/10.1021/es503729h
Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T., 2009. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239(1-3), 229-246. https://doi.org/10.1016/j.desal.2008.03.020
Boltan, J. R., & Linden, K. G., 2003. Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. Journal of Environmental Engineering, 129(3), 209-215. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(209)
Bolzonella, D., Fatone, F., Gottardo, M., & Frison, N., 2018. Nutrient recovery from anaerobic digestate of agro-waste: Techno-economic assessment of full-scale applications. Journal of Environmental Management, 216, 111-119. https://doi.org/10.1016/j.jenvman.2017.08.026
Brack, W., Dulio, V., Ågerstrand, M., Allan, I., Altenburger, R., Brinkmann, M., … & Vrana, B., 2017. Towards the review of the European Union Water Framework Directive: recommendations for more efficient assessment and management of chemical contamination in European surface water resources. Science of the Total Environment, 576, 720-737. https://doi.org/10.1016/j.scitotenv.2016.10.104
Buchberger, W. W., 2011. Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. Journal of Chromatography A, 1218(4), 603-618. https://doi.org/10.1016/j.chroma.2010.10.040
Bundy, M. M., Doucette, W. J., McNeill, L., & Ericson, J. F., 2007. Removal of pharmaceuticals and related compounds by a bench-scale drinking water treatment system. Journal of Water Supply Research and Technology—AQUA, 56(2), 105–115. https://doi.org/10.2166/aqua.2007.091
Carabineiro, S., Thavorn-Amornsri, T., Pereira, M., & Figueiredo, J., 2011. Adsorption of ciprofloxacin on surface-modified carbon materials. Water Research, 45(15), 4583–4591. https://doi.org/10.1016/j.watres.2011.06.008
Carneiro, R. B., Mukaeda, C. M., Sabatini, C. A., Santos-Neto, Á. J., & Zaiat, M., 2020. Influence of organic loading rate on ciprofloxacin and sulfamethoxazole biodegradation in anaerobic fixed bed biofilm reactors. Journal of Environmental Management, 273, 111170 https://doi.org/10.1016/j.jenvman.2020.111170
Chen, X., Chen, G., & Yue, P. L., 2015. Electrocoagulation and electroflotation of restaurant wastewater. Journal of Environmental Engineering, 126(9), 858-863. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(858)
Cheng, N., Wang, B., Wu, P., Lee, X., Xing, Y., Chen, M., & Gao, B., 2021. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environmental Pollution, 273, 116448. https://doi.org/10.1016/j.envpol.2021.116448
Chlorination in Wastewater Treatment - Meaning, Factors Affecting & Process - Biology Reader
Chlorination of water -Definition, Different Types and Advantages (testbook.com)
Chouikhi, N., Cecilia, J. A., Vilarrasa-García, E., Besghaier, S., Chlendi, M., Franco Duro, F. I., … & Bagane, M., 2019. CO2 adsorption of materials synthesized from clay minerals: A review. Minerals, 9(9), 514. https://doi.org/10.3390/min9090514
Cicek, F., Ovez, S., & Yildiz, S., 2007. The fate of micropollutants in advanced oxidation processes for wastewater treatment. Desalination, 207(1-3), 224-232. https://doi.org/10.1016/j.desal.2006.08.011
Coca, M., González, M., Peña, M., & García, M. T., 2016. Ozone removes pharmaceuticals, personal care products, and other contaminants in water. Desalination and Water Treatment, 57(49-50), 23140-23155. https://doi.org/10.1080/19443994.2016.1144792
Corada-Fernández, C., Candela, L., Torres-Fuentes, N., Pintado-Herrera, M. G., Paniw, M., & González-Mazo, E., 2017. Effects of extreme rainfall events on the distribution of selected emerging contaminants in surface and groundwater: The Guadalete River basin (SW, Spain). Science of the total environment, 605, 770-783. https://doi.org/10.1016/j.scitotenv.2017.06.049
Das, R., Ali, M. E., Hamid, S. B. A., Ramakrishna, S., & Chowdhury, Z. Z., 2018. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 439, 111-129. https://doi.org/10.1016/j.desal.2018.03.009
Delgado, N., Capparelli, A., Navarro, A., & Marino, D., 2019. Pharmaceutical emerging pollutants removal from water using powdered activated carbon: Study of kinetics and adsorption equilibrium. Journal of Environmental Management, 236, 301–308. https://doi.org/10.1016/j.jenvman.2019.01.116
Deng, J., Li, X., Wei, X., Liu, Y., Liang, J., Song, B., Shao, Y., & Huang, W., 2020. Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: Coadsorption and mechanism. Chemical Engineering Journal, 387, 124097. https://doi.org/10.1016/j.cej.2020.124097
Deng, Y., & Zhao, R., 2015. Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1, 167-176. https://doi.org/10.1007/s40726-015-0015-z
Dolara, P., Lesage, G., Mericq, J. P., & Bacchin, P., 2012. Adsorption of pharmaceuticals onto NF membranes: Impact on retention and membrane fouling. Water Research, 46(16), 5287-5295. https://doi.org/10.1016/j.watres.2012.07.017
Drewes, J. E., Reid, T., Nghiem, L. D., & Dickenson, E. R. V., 2016. Removing emerging contaminants from wastewater: Benefits and costs for human health and the environment. Water Science and Technology, 63(5), 956-963. https://doi.org/10.2166/wst.2011.325
Dulio, V., van Bavel, B., Brorström-Lundén, E., Harmsen, J., Hollender, J., Schlabach, M., … & Koschorreck, J., 2018. Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environmental Sciences Europe, 30, 1-13. https://doi.org/10.1186/s12302-018-0135-3
Dutta, K., Lee, M. Y., Lai, W. W. P., Lee, C. H., Lin, A. Y. C., Lin, C. F., & Lin, J. G., 2014. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor. Bioresource technology, 165, 42-49. https://doi.org/10.1016/j.biortech.2014.03.054
Elrod, A. A., 2022. The EPA and its regulations. In The Palgrave Handbook of Global Sustainability (pp. 1-19). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-38948-2_119-1
El-Shafey, E. I., Al-Lawati, H., & Al-Sumri, A. S., 2012. Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. Journal of Environmental Sciences, 24(9), 1579–1586. https://doi.org/10.1016/s1001-0742(11)60949-2
Enaime, G., Baçaoui, A., Yaacoubi, A., & Lübken, M., 2020. Biochar for wastewater treatment—conversion technologies and applications. Applied Sciences, 10(10), 3492. https://doi.org/10.3390/app10103492
Entia, C. J., Cainoy, M., Bahian, C. M., Salon, N. R., Labadan, R. J., & Arazo, R., 2024. Removal of Rhodamine-B dye from Aqueous Solutions Using Alkaline-Modified Activated Carbon from Cocoa Pod Husk. Bulletin of Environmental Contamination and Toxicology, 113(3). https://doi.org/10.1007/s00128-024-03948-0
Fischer, M., 2020. Simulation-based evaluation of zeolite adsorbents for the removal of emerging contaminants. Materials Advances, 1(1), 86–98. https://doi.org/10.1039/d0ma00025f
Gimeno, O., García-Araya, J., Beltrán, F., Rivas, F., & Espejo, A., 2016. Removal of emerging contaminants from a primary effluent of municipal wastewater by means of sequential biological degradation-solar photocatalytic oxidation processes. Chemical Engineering Journal, 290, 12–20. https://doi.org/10.1016/j.cej.2016.01.022
Gogoi, A., Mazumder, P., Tyagi, V. K., Chaminda, G. T., An, A. K., & Kumar, M., 2018. Occurrence and fate of emerging contaminants in water environment: a review. Groundwater for Sustainable Development, 6, 169-180. https://doi.org/10.1016/j.gsd.2017.12.009
Gogoi, A., Mazumder, P., Tyagi, V. K., Chaminda, G. T., An, A. K., & Kumar, M., 2018. Occurrence and fate of emerging contaminants in water environment: a review. Groundwater for Sustainable Development, 6, 169-180. https://doi.org/10.1016/j.gsd.2017.12.009
Grandclément, C., Seyssiecq, I., Piram, A., Wong-Wah-Chung, P., Vanot, G., Tiliacos, N., … & Doumenq, P., 2017. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water research, 111, 297-317. https://doi.org/10.1016/j.watres.2017.01.005
Green, M. S., LeDuc, J., Cohen, D., & Franz, D. R., 2019. Confronting the threat of bioterrorism: realities, challenges, and defensive strategies. The Lancet Infectious Diseases, 19(1), e2-e13. https://doi.org/10.1016/S1473-3099(18)30298-6
Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., & Sanganyado, E., 2018. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of the Total Environment, 636, 299-313. https://doi.org/10.1016/j.scitotenv.2018.04.235
Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., & Sanganyado, E., 2018. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of the Total Environment, 636, 299-313. https://doi.org/10.1016/j.scitotenv.2018.04.235
Hazlett, M. P. T., 2003. The story of “Silent Spring” and the ecological turn, PhD Thesis, University of Kansas.
Hilal, N., Busca, G., Hankins, N., & Mohammad, A. W., 2004. The use of ultrafiltration and nanofiltration membranes in the treatment of metal-working fluids. Desalination, 167, 227-238. https://doi.org/10.1016/j.desal.2004.06.132
Huang, H., Young, T., Schwab, K., Jacangelo, J. G., & Schwab, K. J., 2019. Mechanisms of UV-induced inactivation of health-related microorganisms in water: A review. Journal of Water Process Engineering, 31, 100886. https://doi.org/10.1016/j.jwpe.2019.100886
Huerta-Fontela, M., Galceran, M. T., & Ventura, F., 2011. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Research, 45(3), 1432–1442. https://doi.org/10.1016/j.watres.2010.10.036
i Quer, A. M., Larsson, Y., Johansen, A., Arias, C. A., & Carvalho, P. N., 2024. Cyanobacterial blooms in surface waters–nature-based solutions, cyanotoxins and their biotransformation products. Water Research, 121122. https://doi.org/10.1016/j.watres.2024.121122
Ibáñez, M., Gracia-Lor, E., Bijlsma, L., Morales, E., Pastor, L., & Hernández, F., 2013. Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone. Journal of Hazardous Materials, 260, 389–398. https://doi.org/10.1016/j.jhazmat.2013.05.023
Ikehata, K., El-Din, M. G., & Snyder, S. A., 2008. Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater. Ozone Science and Engineering, 30(1), 21–26. https://doi.org/10.1080/01919510701728970
Ischia, G., Berge, N. D., Bae, S., Marzban, N., Román, S., Farru, G., … & Fiori, L., 2024. Advances in Research and Technology of Hydrothermal Carbonization: Achievements and Future Directions. Agronomy, 14(5), 955. https://doi.org/10.3390/agronomy14050955
Jagadeesh, N., & Sundaram, B., 2023. Adsorption of Pollutants from Wastewater by Biochar: A Review. Journal of Hazardous Materials Advances, 9, 100226. https://doi.org/10.1016/j.hazadv.2022.100226
Jalilian, M., Bissessur, R., Ahmed, M., Hsiao, A., He, Q. S., & Hu, Y., 2024. A review: Hydrochar as potential adsorbents for wastewater treatment and CO2 adsorption. The Science of the Total Environment, 914, 169823. https://doi.org/10.1016/j.scitotenv.2023.169823
Jones, O. A. H., Voulvoulis, N., & Lester, J. N., 2001. Human pharmaceuticals in the aquatic environment a review. Environmental technology, 22(12), 1383-1394. https://doi.org/10.1080/09593332208618186
Jose, J., Pinto, J. S., Kotian, B., Thomas, A. M., & Charyulu, R. N., 2020. Comparison of the regulatory outline of ecopharmacovigilance of pharmaceuticals in Europe, USA, Japan and Australia. Science of the Total Environment, 709, 134815. https://doi.org/10.1016/j.scitotenv.2019.134815
Judd, S., 2011. The MBR book: Principles and applications of membrane bioreactors for water and wastewater treatment (2nd ed.). Elsevier. https://doi.org/10.1016/C2009-0-18633-1
Kambo, H. S., & Dutta, A., 2015. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359–378. https://doi.org/10.1016/j.rser.2015.01.050
Kårelid, V., Larsson, G., & Björlenius, B., 2017. Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants. Journal of environmental management, 193, 491-502. https://doi.org/10.1016/j.jenvman.2017.02.042
Khan, N. A., Khan, S. U., Ahmed, S., Farooqi, I. H., Yousefi, M., Mohammadi, A. A., & Changani, F., 2020. Recent trends in disposal and treatment technologies of emerging-pollutants-A critical review. TrAC Trends in Analytical Chemistry, 122, 115744. https://doi.org/10.1016/j.trac.2019.115744
Kim, E., Jung, C., Han, J., Her, N., Park, C. M., Jang, M., Son, A., & Yoon, Y., 2016. Sorptive removal of selected emerging contaminants using biochar in aqueous solution. Journal of Industrial and Engineering Chemistry, 36, 364–371. https://doi.org/10.1016/j.jiec.2016.03.004
Kim, I., Yamashita, N., & Tanaka, H., 2009. Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. Journal of hazardous materials, 166(2-3), 1134-1140. https://doi.org/10.1016/j.jhazmat.2008.12.020
Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A., 2013. Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 47(2), 833–840. https://doi.org/10.1016/j.watres.2012.11.008
Köhler, C., Triebskorn, R., & Wurm, K., 2018. Wastewater treatment technologies and emerging organic micropollutants: Opportunities and challenges for water quality improvement. Environmental Science & Technology, 52(4), 13450-13464. https://doi.org/10.1021/acs.est.8b02368
Kumar, R., Qureshi, M., Vishwakarma, D. K., Al-Ansari, N., Kuriqi, A., Elbeltagi, A., & Saraswat, A., 2022. A review on emerging water contaminants and the application of sustainable removal technologies. Case Studies in Chemical and Environmental Engineering, 6, 100219. https://doi.org/10.1016/j.cscee.2022.100219
Lapworth, D. J., Baran, N., Stuart, M. E., & Ward, R. S., 2012. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environmental pollution, 163, 287-303. https://doi.org/10.1016/j.envpol.2011.12.034
Lead, J. R., Batley, G. E., Alvarez, P. J. J., Croteau, M. N., Handy, R. D., McLaughlin, M. J., & Judy, J. D., 2018. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review. Environmental Toxicology and Chemistry, 37(8), 2029-2063. https://doi.org/10.1002/etc.4147
Le-Minh, N., Khan, S., Drewes, J., & Stuetz, R., 2010 Fate of antibiotics during municipal water recycling treatment processes. Water Research, 44(15), 4295–4323. https://doi.org/10.1016/j.watres.2010.06.020
Li, Q., Wang, W., Zhang, S., & Wang, S., 2017. Membrane fouling in nanofiltration: Mechanisms, influencing factors, and control strategies. Journal of Membrane Science, 555, 1-24. https://doi.org/10.1016/j.memsci.2018.02.053
Li, X., Shen, X., Jiang, W., Xi, Y., & Li, S., 2024. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. Ecotoxicology and Environmental Safety, 278, 116420. https://doi.org/10.1016/j.ecoenv.2024.116420
Linden, K. G., Shin, G. A., Faubert, G., Cairns, W., & Sobsey, M. D., 2011. UV disinfection of Giardia lamblia cysts in water. Environmental Science & Technology, 35(9), 3764-3771. https://doi.org/10.1021/es0015405
López-Doval, J. C., Montagner, C. C., de Alburquerque, A. F., Moschini-Carlos, V., Umbuzeiro, G., & Pompêo, M., 2017. Nutrients, emerging pollutants and pesticides in a tropical urban reservoir: Spatial distributions and risk assessment. Science of the Total Environment, 575, 1307-1324. https://doi.org/10.1016/j.scitotenv.2016.09.210
Lucas, M. S., & Peres, J. A., 2015. Removal of emerging contaminants by fenton and UV-Driven advanced oxidation processes. Water Air & Soil Pollution, 226(8). https://doi.org/10.1007/s11270-015-2534-z
Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., … & Wang, X. C., 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the total environment, 473, 619-641. https://doi.org/10.1016/j.scitotenv.2013.12.065
Ma, Y., Li, M., Li, P., Yang, L., Wu, L., Gao, F., Qi, X., & Zhang, Z., 2021. Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal. Bioresource Technology, 319, 124199. https://doi.org/10.1016/j.biortech.2020.124199
Macwan, D. P., Dave, P. N., & Chaturvedi, S. (2011). A review on nano-TiO2 sol–gel type syntheses and its applications. Journal of Materials Science, 46(11), 3669–3686. https://doi.org/10.1007/s10853-011-5378-y
Mailler, R., Gasperi, J., Coquet, Y., Buleté, A., Vulliet, E., Deshayes, S., Zedek, S., Mirande-Bret, C., Eudes, V., Bressy, A., Caupos, E., Moilleron, R., Chebbo, G., & Rocher, V.,2016. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale. The Science of the Total Environment, 542, 983–996. https://doi.org/10.1016/j.scitotenv.2015.10.153
Mani, S., Chowdhary, P., & Zainith, S.,2020. Microbes mediated approaches for environmental waste management. In Microorganisms for sustainable environment and health (pp. 17-36). Elsevier. https://doi.org/10.1016/B978-0-12-819001-2.00002-4
Maraschi, F., Sturini, M., Speltini, A., Pretali, L., Profumo, A., Pastorello, A., … & Caratto, V.,2014. TiO2-modified zeolites for fluoroquinolones removal from wastewaters and reuse after solar light regeneration. Journal of Environmental Chemical Engineering, 2(4), 2170-2176. https://doi.org/10.1016/j.jece.2014.08.009
Mohapatra, S., Sharma, N., Mohapatra, G., Padhye, L. P., & Mukherji, S.,2021. Seasonal variation in fluorescence characteristics of dissolved organic matter in wastewater and identification of proteins through HRLC-MS/MS. Journal of hazardous materials, 413, 125453. https://doi.org/10.1016/j.jhazmat.2021.125453
Morin-Crini, N., Lichtfouse, E., Liu, G., Balaram, V., Ribeiro, A. R. L., Lu, Z., … & Crini, G.,2022. Worldwide cases of water pollution by emerging contaminants: a review. Environmental Chemistry Letters, 20(4), 2311-2338. https://doi.org/10.1007/s10311-022-01447-4
Murakami, M., Adachi, N., Saha, M., Morita, C., & Takada, H.,2011. Levels, temporal trends, and tissue distribution of perfluorinated surfactants in freshwater fish from Asian countries. Archives of Environmental Contamination and Toxicology, 61, 631-641. https://doi.org/10.1007/s00244-011-9660-4
Negrete-Bolagay, D., Zamora-Ledezma, C., Chuya-Sumba, C., De Sousa, F. B., Whitehead, D., Alexis, F., & Guerrero, V. H.,2021. Persistent organic pollutants: The trade-off between potential risks and sustainable remediation methods. Journal of environmental Management, 300, 113737. https://doi.org/10.1016/j.jenvman.2021.113737
Nguyen, L. N., Hai, F. I., Yang, S., Kang, J., Leusch, F. D., Roddick, F., … & Nghiem, L. D. ,2014. Removal of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by Trametes versicolor: role of biosorption and biodegradation. International Biodeterioration & Biodegradation, 88, 169-175. https://doi.org/10.1016/j.ibiod.2013.12.017
Nguyen, V. H., Smith, S. M., Wantala, K., & Kajitvichyanukul, P.,2020. Photocatalytic remediation of persistent organic pollutants (POPs): a review. Arabian Journal of Chemistry, 13(11), 8309-8337. https://doi.org/10.1016/j.arabjc.2020.04.028
Ni, S. Q., Cui, Q., & Zheng, Z.,2014. Interaction of polybrominated diphenyl ethers and aerobic granular sludge: biosorption and microbial degradation. BioMed research international, 2014(1), 274620. https://doi.org/10.1155/2014/274620
Nuro, A. (Ed.). (2021). Emerging contaminants. BoD–Books on Demand.
Nyström, F., Nordqvist, K., Herrmann, I., Hedström, A., & Viklander, M.,2020. Removal of metals and hydrocarbons from stormwater using coagulation and flocculation. Water Research, 182, 115919. https://doi.org/10.1016/j.watres.2020.115919
Oulebsir, A., Chaabane, T., Tounsi, H., Omine, K., Sivasankar, V., Flilissa, A., & Darchen, A.,2020. Treatment of artificial pharmaceutical wastewater containing amoxicillin by a sequential electrocoagulation with calcium salt followed by nanofiltration. Journal of Environmental Chemical Engineering, 8(6), 104597. https://doi.org/10.1016/j.jece.2020.104597
Parolo, M. E., Avena, M. J., Pettinari, G. R., & Baschini, M. T.,2012. Influence of Ca2+ on tetracycline adsorption on montmorillonite. Journal of Colloid and Interface Science, 368(1), 420–426. https://doi.org/10.1016/j.jcis.2011.10.079
Parsons, S. A., & Jefferson, B.,2006. Introduction to advanced oxidation processes (1st ed.). IWA Publishing. https://doi.org/10.2166/9781780405304
Pavithra, K. G., P, S. K., V, J., & P, S. R.,2019. Removal of colorants from wastewater: A review on sources and treatment strategies. Journal of Industrial and Engineering Chemistry, 75, 1–19. https://doi.org/10.1016/j.jiec.2019.02.011
Peake, B. M., Braund, R., Tong, A., & Tremblay, L. A.,2015. The Life-cycle of Pharmaceuticals in the Environment. Elsevier Science.
Petrie, B., Barden, R., & Kasprzyk-Hordern, B.,2015. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water research, 72, 3-27. https://doi.org/10.1016/j.watres.2014.08.053
Phan, H. V., Wickham, R., Xie, S., McDonald, J. A., Khan, S. J., Ngo, H. H., … & Nghiem, L. D.,2018. The fate of trace organic contaminants during anaerobic digestion of primary sludge: A pilot scale study. Bioresource technology, 256, 384-390. https://doi.org/10.1016/j.biortech.2018.02.040
Pillai, S. B., & Thombre, N. V.,2024. Coagulation, flocculation, and precipitation in water and used water purification. In Handbook of water and used water purification (pp. 3-27). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-78000-9_63
Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y., & Gogotsi Appels, L., Baeyens, J., Degrève, J., & Dewil, R.,2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755-781. https://doi.org/10.1016/j.pecs.2008.06.002,
Prieto-Rodríguez, L., Oller, I., Klamerth, N., Agüera, A., Rodríguez, E., & Malato, S. ,2013. Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Research, 47(4), 1521–1528. https://doi.org/10.1016/j.watres.2012.11.002
Puri, M., Gandhi, K., & Kumar, M. S.,2023. Emerging environmental contaminants: A global perspective on policies and regulations. Journal of Environmental Management, 332, 117344. https://doi.org/10.1016/j.jenvman.2023.117344
Qin, X., Meng, W., Cheng, S., Xing, B., Shi, C., Nie, Y., … & Xia, H.,2023. Efficient removal of heavy metal and antibiotics from wastewater by phosphate-modified hydrochar. Chemosphere, 345, 140484. https://doi.org/10.1016/j.chemosphere.2023.140484
Qu, X., Alvarez, P. J. J., & Li, Q.,2013. Applications of nanotechnology in water and wastewater treatment. Water Research, 47(12), 3931-3946. https://doi.org/10.1016/j.watres.2012.09.058
Rahardjo, A. K., Susanto, M. J. J., Kurniawan, A., Indraswati, N., & Ismadji, S.,2011. Modified Ponorogo bentonite for the removal of ampicillin from wastewater. Journal of Hazardous Materials, 190(1–3), 1001–1008. https://doi.org/10.1016/j.jhazmat.2011.04.052
Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S. X., & Ok, Y. S.,2014. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource technology, 166, 303-308. https://doi.org/10.1016/j.biortech.2014.05.029
Rasheed, T., Bilal, M., Nabeel, F., Adeel, M., & Iqbal, H. M. ,2019. Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environment international, 122, 52-66. https://doi.org/10.1016/j.envint.2018.11.038
Rathoure, A. K.,2015. Wastewater management: A holistic view. Springer. https://doi.org/10.1007/978-81-322-2230-5
Rayaroth, M. P., Aravind, U. K., & Aravindakumar, C. T.,2016. Degradation of pharmaceuticals by ultrasound-based advanced oxidation process. Environmental Chemistry Letters, 14(3), 259–290. https://doi.org/10.1007/s10311-016-0568-0
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T., … & Cooke, S. J.,2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological reviews, 94(3), 849-873. https://doi.org/10.1111/brv.12480
Reungoat, J., Escher, B. I., Macova, M., & Keller, J.,2011. Biofiltration of wastewater treatment plant effluent: Effective removal of pharmaceuticals and personal care products and reduction of toxicity. Water research, 45(9), 2751-2762. https://doi.org/10.1016/j.watres.2011.02.013
Riva, F., Castiglioni, S., Fattore, E., Manenti, A., Davoli, E., & Zuccato, E.,2018. Monitoring emerging contaminants in the drinking water of Milan and assessment of the human risk. International journal of hygiene and environmental health, 221(3), 451-457. https://doi.org/10.1016/j.ijheh.2018.01.008
Rizzo, L., Malato, S., Antakyali, D., Beretsou, V. G., Đolić, M. B., Gernjak, W., … & Fatta-Kassinos, D.,2019. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Science of the Total Environment, 655, 986-1008. https://doi.org/10.1016/j.scitotenv.2018.11.265
Rizzo, L., Malato, S., Antakyali, D., Beretsou, V. G., Đolić, M. B., Gernjak, W., Heath, E., Ivancev-Tumbas, I., Karaolia, P., Ribeiro, A. R. L., Mascolo, G., McArdell, C. S., Schaar, H., Silva, A. M., & Fatta-Kassinos, D.,2019. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. The Science of the Total Environment, 655, 986–1008. https://doi.org/10.1016/j.scitotenv.2018.11.265
Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. ,2017. Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal, 323, 361-380. https://doi.org/10.1016/j.cej.2017.04.106
Rout, P. R., Bhunia, P., & Dash, R. R.,2016. Response surface optimization of phosphate removal from aqueous solution using a natural adsorbent. Trends in Asian water environmental science and technology, 93-104. https://doi.org/10.1007/978-3-319-39259-2_8
Rout, P. R., Zhang, T. C., Bhunia, P., & Surampalli, R. Y.,2021. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Science of the Total Environment, 753, 141990. https://doi.org/10.1016/j.scitotenv.2020.141990
Ruan, X., Sun, Y., Du, W., Tang, Y., Liu, Q., Zhang, Z., Doherty, W., Frost, R. L., Qian, G., & Tsang, D. C.,2019. Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review. Bioresource Technology, 281, 457–468. https://doi.org/10.1016/j.biortech.2019.02.105
S, R., & P, B.,2019. The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application—A review. Industrial Crops and Products, 128, 405–423. https://doi.org/10.1016/j.indcrop.2018.11.041
Samer, M.,2015. Biological and chemical wastewater treatment processes. Wastewater treatment engineering, 150(10.5772), 61250. https://doi.org/10.5772/61250
Sauvé, S., & Desrosiers, M.,2014. A review of what is an emerging contaminant. Chemistry Central Journal, 8, 1-7. https://doi.org/10.1186/1752-153X-8-15
Shahid, M. K., Kashif, A., Fuwad, A., & Choi, Y.,2021. Current advances in treatment technologies for removal of emerging contaminants from water–A critical review. Coordination Chemistry Reviews, 442, 213993. https://doi.org/10.1016/j.ccr.2021.213993
Shahid, M. K., Kashif, A., Fuwad, A., & Choi, Y.,2021. Current advances in treatment technologies for removal of emerging contaminants from water – A critical review. Coordination Chemistry Reviews, 442, 213993. https://doi.org/10.1016/j.ccr.2021.213993
Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J., & Mayes, A. M.,2008. Science and technology for water purification in the coming decades. Nature, 452(7185), 301-310. https://doi.org/10.1038/nature06599
Shemer, H., Kunukcu, Y. K., & Linden, K. G.,2006. Degradation of the pharmaceutical Metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere, 63(2), 269–276. https://doi.org/10.1016/j.chemosphere.2005.07.029
Shen, W., Wu, Z., Liu, J., Fang, Z., & Zhang, Y.,2019. Degradation of pharmaceuticals and personal care products (PPCPs) by ozone-based processes: Mechanisms, kinetics, and influencing factors. Chemical Engineering Journal, 358, 1108-1128. https://doi.org/10.1016/j.cej.2018.10.104
Shyam, S., Arun, J., Gopinath, K. P., Ribhu, G., Ashish, M., & Ajay, S.,2022. Biomass as source for hydrochar and biochar production to recover phosphates from wastewater: A review on challenges, commercialization, and future perspectives. Chemosphere, 286, 131490. https://doi.org/10.1016/j.chemosphere.2021.131490
Sichel, C., Garcia, C., & Andre, K.,2011. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants. Water Research, 45(19), 6371–6380. https://doi.org/10.1016/j.watres.2011.09.025
Sornalingam, K., McDonagh, A., & Zhou, J. L.,2016. Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: Progress and future challenges. The Science of the Total Environment, 550, 209–224. https://doi.org/10.1016/j.scitotenv.2016.01.086
Suarez, S., Lema, J. M., & Omil, F.,2009. Pre-treatment of hospital wastewater by coagulation–flocculation and flotation. Bioresource Technology, 100(7), 2138–2146. https://doi.org/10.1016/j.biortech.2008.11.015
Sui, Q., Huang, J., Deng, S., Yu, G., & Fan, Q.,2010. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Research, 44(2), 417-426. https://doi.org/10.1016/j.watres.2009.07.010
Sun, J., Wang, J., Zhang, R., Wei, D., Long, Q., Huang, Y., … & Li, A.,2017. Comparison of different advanced treatment processes in removing endocrine disruption effects from municipal wastewater secondary effluent. Chemosphere, 168, 1-9. https://doi.org/10.1016/j.chemosphere.2016.10.031
Teh, C. Y., Budiman, P. M., Shak, K. P. Y., & Wu, T. Y.,2016. Recent advancement of Coagulation–Flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research, 55(16), 4363–4389. https://doi.org/10.1021/acs.iecr.5b04703
Templeton, M. R., Andrews, R. C., Hofmann, R., & Chauret, C.,2009. Chlorine and UV disinfection of drinking water: Effectiveness for inactivating antibiotic-resistant bacteria. Water Research, 43(19), 5087-5096. https://doi.org/10.1016/j.watres.2009.08.047
Tolboom, S. N., Carrillo-Nieves, D., de Jesús Rostro-Alanis, M., de la Cruz Quiroz, R., Barceló, D., Iqbal, H. M., & Parra-Saldivar, R.,2019. Algal-based removal strategies for hazardous contaminants from the environment–a review. Science of The Total Environment, 665, 358-366. https://doi.org/10.1016/j.scitotenv.2019.02.129
Tong, X., You, L., Zhang, J., He, Y., & Gin, K. Y. H.,2022. Advancing prediction of emerging contaminants in a tropical reservoir with general water quality indicators based on a hybrid process and data-driven approach. Journal of Hazardous Materials, 430, 128492. https://doi.org/10.1016/j.jhazmat.2022.128492
Van der Bruggen, B., & Vandecasteele, C.,2003. Removal of pollutants from surface water and groundwater by nanofiltration: Overview of possible applications in the drinking water industry. Environmental Pollution, 122(3), 435-445. https://doi.org/10.1016/S0269-7491(02)00308-1
Van der Bruggen, B., Mänttäri, M., & Nyström, M.,2008. Drawbacks of applying nanofiltration and how to avoid them: a review. Separation and purification technology, 63(2), 251-263. https://doi.org/10.1016/j.seppur.2008.05.010
Van Vliet, M. T., Flörke, M., & Wada, Y.,2017. Quality matters for water scarcity. Nature Geoscience, 10(11), 800-802. https://doi.org/10.1038/ngeo3047
Vassallo, A., Kett, S., Purchase, D., & Marvasi, M.,2021. Antibiotic-resistant genes and bacteria as evolving contaminants of emerging concerns (e-CEC): is it time to include evolution in risk assessment?. Antibiotics, 10(9), 1066. https://doi.org/10.3390/antibiotics10091066
Vilhunen, S., & Sillanpää, M.,2010. Recent developments in photochemical and chemical AOPs in water treatment: A mini-review. Reviews in Environmental Science and Bio/Technology, 9(4), 323-330. https://doi.org/10.1007/s11157-010-9217-8
Wang, D., Bolton, J. R., Andrews, S. A., & Hofmann, R.,2015. UV/chlorine advanced oxidation for drinking water treatment: Kinetics of micropollutant degradation. Water Research, 84, 116-125https://doi.org/10.1016/j.watres.2015.07.004
Wang, F., Xiang, L., Leung, K. S. Y., Elsner, M., Zhang, Y., Guo, Y., … & Tiedje, J. M.,2024. Emerging contaminants: a One Health perspective. The Innovation. https://doi.org/10.1016/j.xinn.2024.100612
Wang, J., Chen, C., & Chena, X.,2012. Ozonation of water containing natural organic matter by the combination of ozonation and biologically activated carbon. Journal of Environmental Sciences, 24(4), 643-649. https://doi.org/10.1016/S1001-0742(11)60743-7
Wang, T., Zhai, Y., Zhu, Y., Li, C., & Zeng, G.,2018. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renewable and Sustainable Energy Reviews, 90, 223–247. https://doi.org/10.1016/j.rser.2018.03.071
Wee, S. Y., & Aris, A. Z.,2019. Occurrence and public-perceived risk of endocrine disrupting compounds in drinking water. NPJ Clean Water, 2(1), 4. https://doi.org/10.1038/s41545-018-0029-3
Westerhoff, P., Yoon, Y., Snyder, S., & Wert, E.,2005. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental science & technology, 39(17), 6649-6663. https://doi.org/10.1021/es0484799
Wiedner, K., Naisse, C., Rumpel, C., Pozzi, A., Wieczorek, P., & Glaser, B.,2013. Chemical modification of biomass residues during hydrothermal carbonization – What makes the difference, temperature or feedstock? Organic Geochemistry, 54, 91–100. https://doi.org/10.1016/j.orggeochem.2012.10.006
Wijekoon, K. C., McDonald, J. A., Khan, S. J., Hai, F. I., Price, W. E., & Nghiem, L. D.,2015. Development of a predictive framework to assess the removal of trace organic chemicals by anaerobic membrane bioreactor. Bioresource technology, 189, 391-398. https://doi.org/10.1016/j.biortech.2015.04.034
Wu, Q., Li, Z., & Hong, H.,2012. Influence of types and charges of exchangeable cations on ciprofloxacin sorption by montmorillonite. Journal of Wuhan University of Technology-Mater Sci Ed, 27(3), 516–522. https://doi.org/10.1007/s11595-012-0495-2
Wu, Q., Li, Z., Hong, H., Yin, K., & Tie, L.,2010. Adsorption and intercalation of ciprofloxacin on montmorillonite. Applied Clay Science, 50(2), 204–211. https://doi.org/10.1016/j.clay.2010.08.001
Yang, J., Pan, B., Li, H., Liao, S., Zhang, D., Wu, M., & Xing, B.,2015. Degradation of P-Nitrophenol on biochars: role of persistent free radicals. Environmental Science & Technology, 50(2), 694–700. https://doi.org/10.1021/acs.est.5b04042
Yao, Y., Gao, B., Chen, H., Jiang, L., Inyang, M., Zimmerman, A. R., Cao, X., Yang, L., Xue, Y., & Li, H.,2012. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. Journal of Hazardous Materials, 209–210, 408–413. https://doi.org/10.1016/j.jhazmat.2012.01.046
Yap, H. C., Pang, Y. L., Lim, S., Abdullah, A. Z., Ong, H. C., & Wu, C. H.,2019. A comprehensive review on state-of-the-art photo-, sono-, and sonophotocatalytic treatments to degrade emerging contaminants. International Journal of Environmental Science and Technology, 16, 601-628. https://doi.org/10.1007/s13762-018-1961-y
Yaroshchuk, A.,2000. Negative rejection of ions in pressure-driven membrane processes. Advances in Colloid and Interface Science, 82(1-3), 93-117. https://doi.org/10.1016/S0001-8686(99)00030-1
Yu, Y., Yin, H., Huang, W., Peng, H., Lu, G., & Dang, Z.,2020. Cellular changes of microbial consortium GY1 during decabromodiphenyl ether (BDE-209) biodegradation and identification of strains responsible for BDE-209 degradation in GY1. Chemosphere, 249, 126205. https://doi.org/10.1016/j.chemosphere.2020.126205
Zhao, L., Cao, X., Zheng, W., Scott, J. W., Sharma, B. K., & Chen, X.,2016. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chemistry & Engineering, 4(3), 1630-1636. https://doi.org/10.1021/acssuschemeng.5b01570
Zhao, Y., Feng, D., Zhang, Y., Huang, Y., & Sun, S.,2016. Effect of pyrolysis temperature on char structure and chemical speciation of alkali and alkaline earth metallic species in biochar. Fuel Processing Technology, 141, 54–60. https://doi.org/10.1016/j.fuproc.2015.06.029
Zhao, Y., Gu, X., Gao, S., Geng, J., & Wang, X.,2012. Adsorption of tetracycline (TC) onto montmorillonite: Cations and humic acid effects. Geoderma, 183–184, 12–18. https://doi.org/10.1016/j.geoderma.2012.03.004
Zheng, H., Wang, Z., Deng, X., Zhao, J., Luo, Y., Novak, J., Herbert, S., & Xing, B.,2013. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresource Technology, 130, 463–471. https://doi.org/10.1016/j.biortech.2012.12.044
Zheng, H., Wang, Z., Zhao, J., Herbert, S., & Xing, B.,2013. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environmental Pollution, 181, 60–67. https://doi.org/10.1016/j.envpol.2013.05.056
Table 1: List of emerging contaminants from various sources and categories