Abargues, M. R., Giménez, J. B., Ferrer, J., Bouzas, A., & Seco, A.,
2018. Endocrine disrupter compounds removal in wastewater using
microalgae: degradation kinetics assessment. Chemical Engineering
Journal, 334, 313-321. https://doi.org/10.1016/j.cej.2017.09.187
Agüera, A., Martínez Bueno, M. J., & Fernández-Alba, A. R., 2013. New
trends in the analytical determination of emerging contaminants and
their transformation products in environmental waters. Environmental
Science and Pollution Research, 20, 3496-3515.
https://doi.org/10.1007/s11356-013-1586-0
Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N. S., & Xu,
J., 2017. Progress in the biological and chemical treatment technologies
for emerging contaminant removal from wastewater: a critical
review. Journal of hazardous materials, 323, 274-298.
https://doi.org/10.1016/j.jhazmat.2016.04.045
Ahmed, S. F., Mofijur, M., Nuzhat, S., Chowdhury, A. T., Rafa, N.,
Uddin, M. A., Inayat, A., Mahlia, T.M.I., Ong, H.C., Chia, W.Y., Show,
P. L., 2021. Recent developments in physical, biological, chemical, and
hybrid treatment techniques for removing emerging contaminants from
wastewater. Journal of hazardous materials, 416, 125912.
https://doi.org/10.1016/j.jhazmat.2021.125912
Appels, L., Baeyens, J., Degrève, J., & Dewil, R., 2008. Principles and
potential of the anaerobic digestion of waste-activated sludge. Progress
in Energy and Combustion Science, 34(6), 755-781.
https://doi.org/10.1016/j.pecs.2008.06.002
Azzaz, A. A., Khiari, B., Jellali, S., Ghimbeu, C. M., & Jeguirim, M.,
2020. Hydrochars production, characterization and application for
wastewater treatment: A review. Renewable and Sustainable Energy
Reviews, 127, 109882. https://doi.org/10.1016/j.rser.2020.109882
Babeker, T. M. A., & Chen, Q. (2021). Heavy Metal Removal from
Wastewater by Adsorption with Hydrochar Derived from Biomass: Current
Applications and Research Trends. Current Pollution Reports, 7(1),
54–71. https://doi.org/10.1007/s40726-020-00172-2
Bala, S., Garg, D., Thirumalesh, B. V., Sharma, M., Sridhar, K.,
Inbaraj, B. S., & Tripathi, M., 2022. Recent strategies for
bioremediation of emerging pollutants: a review for a green and
sustainable environment. Toxics, 10(8), 484.
https://doi.org/10.3390/toxics10080484
Barakat, M. A., 2011. New trends in removing heavy metals from
industrial wastewater. Arabian Journal of Chemistry, 4(4), 361-377.
https://doi.org/10.1016/j.arabjc.2010.07.019
Barbosa, M. O., Moreira, N. F., Ribeiro, A. R., Pereira, M. F., &
Silva, A. M., 2016. Occurrence and removal of organic micropollutants:
An overview of the watch list of EU Decision 2015/495. Water
research, 94, 257-279.
https://doi.org/10.1016/j.watres.2016.02.047
Barrios-Estrada, C., de Jesús Rostro-Alanis, M., Parra, A. L.,
Belleville, M. P., Sanchez-Marcano, J., Iqbal, H. M., & Parra-Saldívar,
R., 2018. Potentialities of active membranes with immobilized laccase
for Bisphenol A degradation. International journal of biological
macromolecules, 108, 837-844.
https://doi.org/10.1016/j.ijbiomac.2017.10.177
Batstone, D. J., & Virdis, B., 2014. The role of anaerobic digestion in
the emerging energy economy. Current opinion in biotechnology, 27,
142-149. https://doi.org/10.1016/j.copbio.2014.01.013
Bing, J., Hu, C., Nie, Y., Yang, M., & Qu, J., 2015. Mechanism of
catalytic ozonation in Fe2O3/Al2O3@ SBA-15 aqueous suspension for
destruction of ibuprofen. Environmental Science & Technology, 49(3),
1690-1697. https://doi.org/10.1021/es503729h
Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T., 2009. A review
of the effects of emerging contaminants in wastewater and options for
their removal. Desalination, 239(1-3), 229-246.
https://doi.org/10.1016/j.desal.2008.03.020
Boltan, J. R., & Linden, K. G., 2003. Standardization of methods for
fluence (UV dose) determination in bench-scale UV experiments. Journal
of Environmental Engineering, 129(3), 209-215.
https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(209)
Bolzonella, D., Fatone, F., Gottardo, M., & Frison, N., 2018. Nutrient
recovery from anaerobic digestate of agro-waste: Techno-economic
assessment of full-scale applications. Journal of Environmental
Management, 216, 111-119.
https://doi.org/10.1016/j.jenvman.2017.08.026
Brack, W., Dulio, V., Ågerstrand, M., Allan, I., Altenburger, R.,
Brinkmann, M., … & Vrana, B., 2017. Towards the review of the
European Union Water Framework Directive: recommendations for more
efficient assessment and management of chemical contamination in
European surface water resources. Science of the Total Environment, 576,
720-737. https://doi.org/10.1016/j.scitotenv.2016.10.104
Buchberger, W. W., 2011. Current approaches to trace analysis of
pharmaceuticals and personal care products in the environment. Journal
of Chromatography A, 1218(4), 603-618.
https://doi.org/10.1016/j.chroma.2010.10.040
Bundy, M. M., Doucette, W. J., McNeill, L., & Ericson, J. F., 2007.
Removal of pharmaceuticals and related compounds by a bench-scale
drinking water treatment system. Journal of Water Supply Research and
Technology—AQUA, 56(2), 105–115.
https://doi.org/10.2166/aqua.2007.091
Carabineiro, S., Thavorn-Amornsri, T., Pereira, M., & Figueiredo, J.,
2011. Adsorption of ciprofloxacin on surface-modified carbon materials.
Water Research, 45(15), 4583–4591.
https://doi.org/10.1016/j.watres.2011.06.008
Carneiro, R. B., Mukaeda, C. M., Sabatini, C. A., Santos-Neto, Á. J., &
Zaiat, M., 2020. Influence of organic loading rate on ciprofloxacin and
sulfamethoxazole biodegradation in anaerobic fixed bed biofilm
reactors. Journal of Environmental Management, 273, 111170
https://doi.org/10.1016/j.jenvman.2020.111170
Chen, X., Chen, G., & Yue, P. L., 2015. Electrocoagulation and
electroflotation of restaurant wastewater. Journal of Environmental
Engineering, 126(9), 858-863.
https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(858)
Cheng, N., Wang, B., Wu, P., Lee, X., Xing, Y., Chen, M., & Gao, B.,
2021. Adsorption of emerging contaminants from water and wastewater by
modified biochar: A review. Environmental Pollution, 273, 116448.
https://doi.org/10.1016/j.envpol.2021.116448
Chlorination
in Wastewater Treatment - Meaning, Factors Affecting & Process -
Biology Reader
Chlorination
of water -Definition, Different Types and Advantages (testbook.com)
Chouikhi, N., Cecilia, J. A., Vilarrasa-García, E., Besghaier, S.,
Chlendi, M., Franco Duro, F. I., … & Bagane, M., 2019. CO2 adsorption
of materials synthesized from clay minerals: A review. Minerals, 9(9),
514. https://doi.org/10.3390/min9090514
Cicek, F., Ovez, S., & Yildiz, S., 2007. The fate of micropollutants in
advanced oxidation processes for wastewater treatment. Desalination,
207(1-3), 224-232. https://doi.org/10.1016/j.desal.2006.08.011
Coca, M., González, M., Peña, M., & García, M. T., 2016. Ozone removes
pharmaceuticals, personal care products, and other contaminants in
water. Desalination and Water Treatment, 57(49-50), 23140-23155.
https://doi.org/10.1080/19443994.2016.1144792
Corada-Fernández, C., Candela, L., Torres-Fuentes, N., Pintado-Herrera,
M. G., Paniw, M., & González-Mazo, E., 2017. Effects of extreme
rainfall events on the distribution of selected emerging contaminants in
surface and groundwater: The Guadalete River basin (SW, Spain). Science
of the total environment, 605, 770-783.
https://doi.org/10.1016/j.scitotenv.2017.06.049
Das, R., Ali, M. E., Hamid, S. B. A., Ramakrishna, S., & Chowdhury, Z.
Z., 2018. Carbon nanotube membranes for water purification: A bright
future in water desalination. Desalination, 439, 111-129.
https://doi.org/10.1016/j.desal.2018.03.009
Delgado, N., Capparelli, A., Navarro, A., & Marino, D., 2019.
Pharmaceutical emerging pollutants removal from water using powdered
activated carbon: Study of kinetics and adsorption equilibrium. Journal
of Environmental Management, 236, 301–308.
https://doi.org/10.1016/j.jenvman.2019.01.116
Deng, J., Li, X., Wei, X., Liu, Y., Liang, J., Song, B., Shao, Y., &
Huang, W., 2020. Hybrid silicate-hydrochar composite for highly
efficient removal of heavy metal and antibiotics: Coadsorption and
mechanism. Chemical Engineering Journal, 387, 124097.
https://doi.org/10.1016/j.cej.2020.124097
Deng, Y., & Zhao, R., 2015. Advanced oxidation processes (AOPs) in
wastewater treatment. Current Pollution Reports, 1, 167-176.
https://doi.org/10.1007/s40726-015-0015-z
Dolara, P., Lesage, G., Mericq, J. P., & Bacchin, P., 2012. Adsorption
of pharmaceuticals onto NF membranes: Impact on retention and membrane
fouling. Water Research, 46(16), 5287-5295.
https://doi.org/10.1016/j.watres.2012.07.017
Drewes, J. E., Reid, T., Nghiem, L. D., & Dickenson, E. R. V., 2016.
Removing emerging contaminants from wastewater: Benefits and costs for
human health and the environment. Water Science and Technology, 63(5),
956-963. https://doi.org/10.2166/wst.2011.325
Dulio, V., van Bavel, B., Brorström-Lundén, E., Harmsen, J., Hollender,
J., Schlabach, M., … & Koschorreck, J., 2018. Emerging pollutants in
the EU: 10 years of NORMAN in support of environmental policies and
regulations. Environmental Sciences Europe, 30, 1-13.
https://doi.org/10.1186/s12302-018-0135-3
Dutta, K., Lee, M. Y., Lai, W. W. P., Lee, C. H., Lin, A. Y. C., Lin, C.
F., & Lin, J. G., 2014. Removal of pharmaceuticals and organic matter
from municipal wastewater using two-stage anaerobic fluidized membrane
bioreactor. Bioresource technology, 165, 42-49.
https://doi.org/10.1016/j.biortech.2014.03.054
Elrod, A. A., 2022. The EPA and its regulations. In The Palgrave
Handbook of Global Sustainability (pp. 1-19). Cham: Springer
International Publishing.
https://doi.org/10.1007/978-3-030-38948-2_119-1
El-Shafey, E. I., Al-Lawati, H., & Al-Sumri, A. S., 2012. Ciprofloxacin
adsorption from aqueous solution onto chemically prepared carbon from
date palm leaflets. Journal of Environmental Sciences, 24(9),
1579–1586. https://doi.org/10.1016/s1001-0742(11)60949-2
Enaime, G., Baçaoui, A., Yaacoubi, A., & Lübken, M., 2020. Biochar for
wastewater treatment—conversion technologies and applications. Applied
Sciences, 10(10), 3492. https://doi.org/10.3390/app10103492
Entia, C. J., Cainoy, M., Bahian, C. M., Salon, N. R., Labadan, R. J.,
& Arazo, R., 2024. Removal of Rhodamine-B dye from Aqueous Solutions
Using Alkaline-Modified Activated Carbon from Cocoa Pod Husk. Bulletin
of Environmental Contamination and Toxicology, 113(3).
https://doi.org/10.1007/s00128-024-03948-0
Fischer, M., 2020. Simulation-based evaluation of zeolite adsorbents for
the removal of emerging contaminants. Materials Advances, 1(1), 86–98.
https://doi.org/10.1039/d0ma00025f
Gimeno, O., García-Araya, J., Beltrán, F., Rivas, F., & Espejo, A.,
2016. Removal of emerging contaminants from a primary effluent of
municipal wastewater by means of sequential biological degradation-solar
photocatalytic oxidation processes. Chemical Engineering Journal, 290,
12–20. https://doi.org/10.1016/j.cej.2016.01.022
Gogoi, A., Mazumder, P., Tyagi, V. K., Chaminda, G. T., An, A. K., &
Kumar, M., 2018. Occurrence and fate of emerging contaminants in water
environment: a review. Groundwater for Sustainable Development, 6,
169-180. https://doi.org/10.1016/j.gsd.2017.12.009
Gogoi, A., Mazumder, P., Tyagi, V. K., Chaminda, G. T., An, A. K., &
Kumar, M., 2018. Occurrence and fate of emerging contaminants in water
environment: a review. Groundwater for Sustainable Development, 6,
169-180. https://doi.org/10.1016/j.gsd.2017.12.009
Grandclément, C., Seyssiecq, I., Piram, A., Wong-Wah-Chung, P., Vanot,
G., Tiliacos, N., … & Doumenq, P., 2017. From the conventional
biological wastewater treatment to hybrid processes, the evaluation of
organic micropollutant removal: a review. Water research, 111, 297-317.
https://doi.org/10.1016/j.watres.2017.01.005
Green, M. S., LeDuc, J., Cohen, D., & Franz, D. R., 2019. Confronting
the threat of bioterrorism: realities, challenges, and defensive
strategies. The Lancet Infectious Diseases, 19(1), e2-e13.
https://doi.org/10.1016/S1473-3099(18)30298-6
Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., &
Sanganyado, E., 2018. Sources, behaviour, and environmental and human
health risks of high-technology rare earth elements as emerging
contaminants. Science of the Total Environment, 636, 299-313.
https://doi.org/10.1016/j.scitotenv.2018.04.235
Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., &
Sanganyado, E., 2018. Sources, behaviour, and environmental and human
health risks of high-technology rare earth elements as emerging
contaminants. Science of the Total Environment, 636, 299-313.
https://doi.org/10.1016/j.scitotenv.2018.04.235
Hazlett, M. P. T., 2003. The story of “Silent Spring” and the
ecological turn, PhD Thesis, University of Kansas.
Hilal, N., Busca, G., Hankins, N., & Mohammad, A. W., 2004. The use of
ultrafiltration and nanofiltration membranes in the treatment of
metal-working fluids. Desalination, 167, 227-238.
https://doi.org/10.1016/j.desal.2004.06.132
Huang, H., Young, T., Schwab, K., Jacangelo, J. G., & Schwab, K. J.,
2019. Mechanisms of UV-induced inactivation of health-related
microorganisms in water: A review. Journal of Water Process Engineering,
31, 100886. https://doi.org/10.1016/j.jwpe.2019.100886
Huerta-Fontela, M., Galceran, M. T., & Ventura, F., 2011. Occurrence
and removal of pharmaceuticals and hormones through drinking water
treatment. Water Research, 45(3), 1432–1442.
https://doi.org/10.1016/j.watres.2010.10.036
i Quer, A. M., Larsson, Y., Johansen, A., Arias, C. A., & Carvalho, P.
N., 2024. Cyanobacterial blooms in surface waters–nature-based
solutions, cyanotoxins and their biotransformation products. Water
Research, 121122. https://doi.org/10.1016/j.watres.2024.121122
Ibáñez, M., Gracia-Lor, E., Bijlsma, L., Morales, E., Pastor, L., &
Hernández, F., 2013. Removal of emerging contaminants in sewage water
subjected to advanced oxidation with ozone. Journal of Hazardous
Materials, 260, 389–398.
https://doi.org/10.1016/j.jhazmat.2013.05.023
Ikehata, K., El-Din, M. G., & Snyder, S. A., 2008. Ozonation and
advanced oxidation treatment of emerging organic pollutants in water and
wastewater. Ozone Science and Engineering, 30(1), 21–26.
https://doi.org/10.1080/01919510701728970
Ischia, G., Berge, N. D., Bae, S., Marzban, N., Román, S., Farru, G.,
… & Fiori, L., 2024. Advances in Research and Technology of
Hydrothermal Carbonization: Achievements and Future
Directions. Agronomy, 14(5), 955.
https://doi.org/10.3390/agronomy14050955
Jagadeesh, N., & Sundaram, B., 2023. Adsorption of Pollutants from
Wastewater by Biochar: A Review. Journal of Hazardous Materials
Advances, 9, 100226. https://doi.org/10.1016/j.hazadv.2022.100226
Jalilian, M., Bissessur, R., Ahmed, M., Hsiao, A., He, Q. S., & Hu, Y.,
2024. A review: Hydrochar as potential adsorbents for wastewater
treatment and CO2 adsorption. The Science of the Total Environment, 914,
169823. https://doi.org/10.1016/j.scitotenv.2023.169823
Jones, O. A. H., Voulvoulis, N., & Lester, J. N., 2001. Human
pharmaceuticals in the aquatic environment a review. Environmental
technology, 22(12), 1383-1394.
https://doi.org/10.1080/09593332208618186
Jose, J., Pinto, J. S., Kotian, B., Thomas, A. M., & Charyulu, R. N.,
2020. Comparison of the regulatory outline of ecopharmacovigilance of
pharmaceuticals in Europe, USA, Japan and Australia. Science of the
Total Environment, 709, 134815.
https://doi.org/10.1016/j.scitotenv.2019.134815
Judd, S., 2011. The MBR book: Principles and applications of membrane
bioreactors for water and wastewater treatment (2nd ed.). Elsevier.
https://doi.org/10.1016/C2009-0-18633-1
Kambo, H. S., & Dutta, A., 2015. A comparative review of biochar and
hydrochar in terms of production, physico-chemical properties and
applications. Renewable and Sustainable Energy Reviews, 45, 359–378.
https://doi.org/10.1016/j.rser.2015.01.050
Kårelid, V., Larsson, G., & Björlenius, B., 2017. Pilot-scale removal
of pharmaceuticals in municipal wastewater: Comparison of granular and
powdered activated carbon treatment at three wastewater treatment
plants. Journal of environmental management, 193, 491-502.
https://doi.org/10.1016/j.jenvman.2017.02.042
Khan, N. A., Khan, S. U., Ahmed, S., Farooqi, I. H., Yousefi, M.,
Mohammadi, A. A., & Changani, F., 2020. Recent trends in disposal and
treatment technologies of emerging-pollutants-A critical review. TrAC
Trends in Analytical Chemistry, 122, 115744.
https://doi.org/10.1016/j.trac.2019.115744
Kim, E., Jung, C., Han, J., Her, N., Park, C. M., Jang, M., Son, A., &
Yoon, Y., 2016. Sorptive removal of selected emerging contaminants using
biochar in aqueous solution. Journal of Industrial and Engineering
Chemistry, 36, 364–371.
https://doi.org/10.1016/j.jiec.2016.03.004
Kim, I., Yamashita, N., & Tanaka, H., 2009. Performance of UV and
UV/H2O2 processes for the removal of pharmaceuticals detected in
secondary effluent of a sewage treatment plant in Japan. Journal of
hazardous materials, 166(2-3), 1134-1140.
https://doi.org/10.1016/j.jhazmat.2008.12.020
Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A., 2013.
Photo-Fenton and modified photo-Fenton at neutral pH for the treatment
of emerging contaminants in wastewater treatment plant effluents: A
comparison. Water Research, 47(2), 833–840.
https://doi.org/10.1016/j.watres.2012.11.008
Köhler, C., Triebskorn, R., & Wurm, K., 2018. Wastewater treatment
technologies and emerging organic micropollutants: Opportunities and
challenges for water quality improvement. Environmental Science &
Technology, 52(4), 13450-13464.
https://doi.org/10.1021/acs.est.8b02368
Kumar, R., Qureshi, M., Vishwakarma, D. K., Al-Ansari, N., Kuriqi, A.,
Elbeltagi, A., & Saraswat, A., 2022. A review on emerging water
contaminants and the application of sustainable removal
technologies. Case Studies in Chemical and Environmental Engineering, 6,
100219. https://doi.org/10.1016/j.cscee.2022.100219
Lapworth, D. J., Baran, N., Stuart, M. E., & Ward, R. S., 2012.
Emerging organic contaminants in groundwater: a review of sources, fate
and occurrence. Environmental pollution, 163, 287-303.
https://doi.org/10.1016/j.envpol.2011.12.034
Lead, J. R., Batley, G. E., Alvarez, P. J. J., Croteau, M. N., Handy, R.
D., McLaughlin, M. J., & Judy, J. D., 2018. Nanomaterials in the
environment: Behavior, fate, bioavailability, and effects—An updated
review. Environmental Toxicology and Chemistry, 37(8), 2029-2063.
https://doi.org/10.1002/etc.4147
Le-Minh, N., Khan, S., Drewes, J., & Stuetz, R., 2010 Fate of
antibiotics during municipal water recycling treatment processes. Water
Research, 44(15), 4295–4323.
https://doi.org/10.1016/j.watres.2010.06.020
Li, Q., Wang, W., Zhang, S., & Wang, S., 2017. Membrane fouling in
nanofiltration: Mechanisms, influencing factors, and control strategies.
Journal of Membrane Science, 555, 1-24.
https://doi.org/10.1016/j.memsci.2018.02.053
Li, X., Shen, X., Jiang, W., Xi, Y., & Li, S., 2024. Comprehensive
review of emerging contaminants: Detection technologies, environmental
impact, and management strategies. Ecotoxicology and Environmental
Safety, 278, 116420. https://doi.org/10.1016/j.ecoenv.2024.116420
Linden, K. G., Shin, G. A., Faubert, G., Cairns, W., & Sobsey, M. D.,
2011. UV disinfection of Giardia lamblia cysts in water. Environmental
Science & Technology, 35(9), 3764-3771.
https://doi.org/10.1021/es0015405
López-Doval, J. C., Montagner, C. C., de Alburquerque, A. F.,
Moschini-Carlos, V., Umbuzeiro, G., & Pompêo, M., 2017. Nutrients,
emerging pollutants and pesticides in a tropical urban reservoir:
Spatial distributions and risk assessment. Science of the Total
Environment, 575, 1307-1324.
https://doi.org/10.1016/j.scitotenv.2016.09.210
Lucas, M. S., & Peres, J. A., 2015. Removal of emerging contaminants by
fenton and UV-Driven advanced oxidation processes. Water Air & Soil
Pollution, 226(8). https://doi.org/10.1007/s11270-015-2534-z
Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., …
& Wang, X. C., 2014. A review on the occurrence of micropollutants in
the aquatic environment and their fate and removal during wastewater
treatment. Science of the total environment, 473, 619-641.
https://doi.org/10.1016/j.scitotenv.2013.12.065
Ma, Y., Li, M., Li, P., Yang, L., Wu, L., Gao, F., Qi, X., & Zhang, Z.,
2021. Hydrothermal synthesis of magnetic sludge biochar for tetracycline
and ciprofloxacin adsorptive removal. Bioresource Technology, 319,
124199. https://doi.org/10.1016/j.biortech.2020.124199
Macwan, D. P., Dave, P. N., & Chaturvedi, S. (2011). A review on
nano-TiO2 sol–gel type syntheses and its applications. Journal of
Materials Science, 46(11), 3669–3686.
https://doi.org/10.1007/s10853-011-5378-y
Mailler, R., Gasperi, J., Coquet, Y., Buleté, A., Vulliet, E., Deshayes,
S., Zedek, S., Mirande-Bret, C., Eudes, V., Bressy, A., Caupos, E.,
Moilleron, R., Chebbo, G., & Rocher, V.,2016. Removal of a wide range
of emerging pollutants from wastewater treatment plant discharges by
micro-grain activated carbon in fluidized bed as tertiary treatment at
large pilot scale. The Science of the Total Environment, 542, 983–996.
https://doi.org/10.1016/j.scitotenv.2015.10.153
Mani, S., Chowdhary, P., & Zainith, S.,2020. Microbes mediated
approaches for environmental waste management. In Microorganisms for
sustainable environment and health (pp. 17-36). Elsevier.
https://doi.org/10.1016/B978-0-12-819001-2.00002-4
Maraschi, F., Sturini, M., Speltini, A., Pretali, L., Profumo, A.,
Pastorello, A., … & Caratto, V.,2014. TiO2-modified zeolites for
fluoroquinolones removal from wastewaters and reuse after solar light
regeneration. Journal of Environmental Chemical Engineering, 2(4),
2170-2176. https://doi.org/10.1016/j.jece.2014.08.009
Mohapatra, S., Sharma, N., Mohapatra, G., Padhye, L. P., & Mukherji,
S.,2021. Seasonal variation in fluorescence characteristics of dissolved
organic matter in wastewater and identification of proteins through
HRLC-MS/MS. Journal of hazardous materials, 413, 125453.
https://doi.org/10.1016/j.jhazmat.2021.125453
Morin-Crini, N., Lichtfouse, E., Liu, G., Balaram, V., Ribeiro, A. R.
L., Lu, Z., … & Crini, G.,2022. Worldwide cases of water pollution by
emerging contaminants: a review. Environmental Chemistry Letters, 20(4),
2311-2338. https://doi.org/10.1007/s10311-022-01447-4
Murakami, M., Adachi, N., Saha, M., Morita, C., & Takada, H.,2011.
Levels, temporal trends, and tissue distribution of perfluorinated
surfactants in freshwater fish from Asian countries. Archives of
Environmental Contamination and Toxicology, 61, 631-641.
https://doi.org/10.1007/s00244-011-9660-4
Negrete-Bolagay, D., Zamora-Ledezma, C., Chuya-Sumba, C., De Sousa, F.
B., Whitehead, D., Alexis, F., & Guerrero, V. H.,2021. Persistent
organic pollutants: The trade-off between potential risks and
sustainable remediation methods. Journal of environmental
Management, 300, 113737.
https://doi.org/10.1016/j.jenvman.2021.113737
Nguyen, L. N., Hai, F. I., Yang, S., Kang, J., Leusch, F. D., Roddick,
F., … & Nghiem, L. D. ,2014. Removal of pharmaceuticals, steroid
hormones, phytoestrogens, UV-filters, industrial chemicals and
pesticides by Trametes versicolor: role of biosorption and
biodegradation. International Biodeterioration & Biodegradation, 88,
169-175. https://doi.org/10.1016/j.ibiod.2013.12.017
Nguyen, V. H., Smith, S. M., Wantala, K., & Kajitvichyanukul, P.,2020.
Photocatalytic remediation of persistent organic pollutants (POPs): a
review. Arabian Journal of Chemistry, 13(11), 8309-8337.
https://doi.org/10.1016/j.arabjc.2020.04.028
Ni, S. Q., Cui, Q., & Zheng, Z.,2014. Interaction of polybrominated
diphenyl ethers and aerobic granular sludge: biosorption and microbial
degradation. BioMed research international, 2014(1), 274620.
https://doi.org/10.1155/2014/274620
Nuro, A. (Ed.). (2021). Emerging contaminants. BoD–Books on Demand.
Nyström, F., Nordqvist, K., Herrmann, I., Hedström, A., & Viklander,
M.,2020. Removal of metals and hydrocarbons from stormwater using
coagulation and flocculation. Water Research, 182, 115919.
https://doi.org/10.1016/j.watres.2020.115919
Oulebsir, A., Chaabane, T., Tounsi, H., Omine, K., Sivasankar, V.,
Flilissa, A., & Darchen, A.,2020. Treatment of artificial
pharmaceutical wastewater containing amoxicillin by a sequential
electrocoagulation with calcium salt followed by nanofiltration. Journal
of Environmental Chemical Engineering, 8(6), 104597.
https://doi.org/10.1016/j.jece.2020.104597
Parolo, M. E., Avena, M. J., Pettinari, G. R., & Baschini, M. T.,2012.
Influence of Ca2+ on tetracycline adsorption on montmorillonite. Journal
of Colloid and Interface Science, 368(1), 420–426.
https://doi.org/10.1016/j.jcis.2011.10.079
Parsons, S. A., & Jefferson, B.,2006. Introduction to advanced
oxidation processes (1st ed.). IWA Publishing.
https://doi.org/10.2166/9781780405304
Pavithra, K. G., P, S. K., V, J., & P, S. R.,2019. Removal of colorants
from wastewater: A review on sources and treatment strategies. Journal
of Industrial and Engineering Chemistry, 75, 1–19.
https://doi.org/10.1016/j.jiec.2019.02.011
Peake, B. M., Braund, R., Tong, A., & Tremblay, L. A.,2015. The
Life-cycle of Pharmaceuticals in the Environment. Elsevier Science.
Petrie, B., Barden, R., & Kasprzyk-Hordern, B.,2015. A review on
emerging contaminants in wastewaters and the environment: current
knowledge, understudied areas and recommendations for future
monitoring. Water research, 72, 3-27.
https://doi.org/10.1016/j.watres.2014.08.053
Phan, H. V., Wickham, R., Xie, S., McDonald, J. A., Khan, S. J., Ngo, H.
H., … & Nghiem, L. D.,2018. The fate of trace organic contaminants
during anaerobic digestion of primary sludge: A pilot scale
study. Bioresource technology, 256, 384-390.
https://doi.org/10.1016/j.biortech.2018.02.040
Pillai, S. B., & Thombre, N. V.,2024. Coagulation, flocculation, and
precipitation in water and used water purification. In Handbook of water
and used water purification (pp. 3-27). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-319-78000-9_63
Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y., & Gogotsi Appels,
L., Baeyens, J., Degrève, J., & Dewil, R.,2008. Principles and
potential of the anaerobic digestion of waste-activated sludge. Progress
in Energy and Combustion Science, 34(6), 755-781.
https://doi.org/10.1016/j.pecs.2008.06.002,
Prieto-Rodríguez, L., Oller, I., Klamerth, N., Agüera, A., Rodríguez,
E., & Malato, S. ,2013. Application of solar AOPs and ozonation for
elimination of micropollutants in municipal wastewater treatment plant
effluents. Water Research, 47(4), 1521–1528.
https://doi.org/10.1016/j.watres.2012.11.002
Puri, M., Gandhi, K., & Kumar, M. S.,2023. Emerging environmental
contaminants: A global perspective on policies and regulations. Journal
of Environmental Management, 332, 117344.
https://doi.org/10.1016/j.jenvman.2023.117344
Qin, X., Meng, W., Cheng, S., Xing, B., Shi, C., Nie, Y., … & Xia,
H.,2023. Efficient removal of heavy metal and antibiotics from
wastewater by phosphate-modified hydrochar. Chemosphere, 345, 140484.
https://doi.org/10.1016/j.chemosphere.2023.140484
Qu, X., Alvarez, P. J. J., & Li, Q.,2013. Applications of
nanotechnology in water and wastewater treatment. Water Research,
47(12), 3931-3946. https://doi.org/10.1016/j.watres.2012.09.058
Rahardjo, A. K., Susanto, M. J. J., Kurniawan, A., Indraswati, N., &
Ismadji, S.,2011. Modified Ponorogo bentonite for the removal of
ampicillin from wastewater. Journal of Hazardous Materials, 190(1–3),
1001–1008. https://doi.org/10.1016/j.jhazmat.2011.04.052
Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D.,
Chang, S. X., & Ok, Y. S.,2014. Pyrolysis condition affected
sulfamethazine sorption by tea waste biochars. Bioresource
technology, 166, 303-308.
https://doi.org/10.1016/j.biortech.2014.05.029
Rasheed, T., Bilal, M., Nabeel, F., Adeel, M., & Iqbal, H. M. ,2019.
Environmentally-related contaminants of high concern: potential sources
and analytical modalities for detection, quantification, and
treatment. Environment international, 122, 52-66.
https://doi.org/10.1016/j.envint.2018.11.038
Rathoure, A. K.,2015. Wastewater management: A holistic view. Springer.
https://doi.org/10.1007/978-81-322-2230-5
Rayaroth, M. P., Aravind, U. K., & Aravindakumar, C. T.,2016.
Degradation of pharmaceuticals by ultrasound-based advanced oxidation
process. Environmental Chemistry Letters, 14(3), 259–290.
https://doi.org/10.1007/s10311-016-0568-0
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A.,
Johnson, P. T., … & Cooke, S. J.,2019. Emerging threats and
persistent conservation challenges for freshwater
biodiversity. Biological reviews, 94(3), 849-873.
https://doi.org/10.1111/brv.12480
Reungoat, J., Escher, B. I., Macova, M., & Keller, J.,2011.
Biofiltration of wastewater treatment plant effluent: Effective removal
of pharmaceuticals and personal care products and reduction of
toxicity. Water research, 45(9), 2751-2762.
https://doi.org/10.1016/j.watres.2011.02.013
Riva, F., Castiglioni, S., Fattore, E., Manenti, A., Davoli, E., &
Zuccato, E.,2018. Monitoring emerging contaminants in the drinking water
of Milan and assessment of the human risk. International journal of
hygiene and environmental health, 221(3), 451-457.
https://doi.org/10.1016/j.ijheh.2018.01.008
Rizzo, L., Malato, S., Antakyali, D., Beretsou, V. G., Đolić, M. B.,
Gernjak, W., … & Fatta-Kassinos, D.,2019. Consolidated vs new
advanced treatment methods for the removal of contaminants of emerging
concern from urban wastewater. Science of the Total Environment, 655,
986-1008. https://doi.org/10.1016/j.scitotenv.2018.11.265
Rizzo, L., Malato, S., Antakyali, D., Beretsou, V. G., Đolić, M. B.,
Gernjak, W., Heath, E., Ivancev-Tumbas, I., Karaolia, P., Ribeiro, A. R.
L., Mascolo, G., McArdell, C. S., Schaar, H., Silva, A. M., &
Fatta-Kassinos, D.,2019. Consolidated vs new advanced treatment methods
for the removal of contaminants of emerging concern from urban
wastewater. The Science of the Total Environment, 655, 986–1008.
https://doi.org/10.1016/j.scitotenv.2018.11.265
Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., &
Bandala, E. R. ,2017. Treatment technologies for emerging contaminants
in water: A review. Chemical Engineering Journal, 323, 361-380.
https://doi.org/10.1016/j.cej.2017.04.106
Rout, P. R., Bhunia, P., & Dash, R. R.,2016. Response surface
optimization of phosphate removal from aqueous solution using a natural
adsorbent. Trends in Asian water environmental science and technology,
93-104. https://doi.org/10.1007/978-3-319-39259-2_8
Rout, P. R., Zhang, T. C., Bhunia, P., & Surampalli, R. Y.,2021.
Treatment technologies for emerging contaminants in wastewater treatment
plants: A review. Science of the Total Environment, 753, 141990.
https://doi.org/10.1016/j.scitotenv.2020.141990
Ruan, X., Sun, Y., Du, W., Tang, Y., Liu, Q., Zhang, Z., Doherty, W.,
Frost, R. L., Qian, G., & Tsang, D. C.,2019. Formation,
characteristics, and applications of environmentally persistent free
radicals in biochars: A review. Bioresource Technology, 281, 457–468.
https://doi.org/10.1016/j.biortech.2019.02.105
S, R., & P, B.,2019. The potential of lignocellulosic biomass
precursors for biochar production: Performance, mechanism and wastewater
application—A review. Industrial Crops and Products, 128, 405–423.
https://doi.org/10.1016/j.indcrop.2018.11.041
Samer, M.,2015. Biological and chemical wastewater treatment
processes. Wastewater treatment engineering, 150(10.5772), 61250.
https://doi.org/10.5772/61250
Sauvé, S., & Desrosiers, M.,2014. A review of what is an emerging
contaminant. Chemistry Central Journal, 8, 1-7.
https://doi.org/10.1186/1752-153X-8-15
Shahid, M. K., Kashif, A., Fuwad, A., & Choi, Y.,2021. Current advances
in treatment technologies for removal of emerging contaminants from
water–A critical review. Coordination Chemistry Reviews, 442, 213993.
https://doi.org/10.1016/j.ccr.2021.213993
Shahid, M. K., Kashif, A., Fuwad, A., & Choi, Y.,2021. Current advances
in treatment technologies for removal of emerging contaminants from
water – A critical review. Coordination Chemistry Reviews, 442, 213993.
https://doi.org/10.1016/j.ccr.2021.213993
Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas,
B. J., & Mayes, A. M.,2008. Science and technology for water
purification in the coming decades. Nature, 452(7185), 301-310.
https://doi.org/10.1038/nature06599
Shemer, H., Kunukcu, Y. K., & Linden, K. G.,2006. Degradation of the
pharmaceutical Metronidazole via UV, Fenton and photo-Fenton processes.
Chemosphere, 63(2), 269–276.
https://doi.org/10.1016/j.chemosphere.2005.07.029
Shen, W., Wu, Z., Liu, J., Fang, Z., & Zhang, Y.,2019. Degradation of
pharmaceuticals and personal care products (PPCPs) by ozone-based
processes: Mechanisms, kinetics, and influencing factors. Chemical
Engineering Journal, 358, 1108-1128.
https://doi.org/10.1016/j.cej.2018.10.104
Shyam, S., Arun, J., Gopinath, K. P., Ribhu, G., Ashish, M., & Ajay,
S.,2022. Biomass as source for hydrochar and biochar production to
recover phosphates from wastewater: A review on challenges,
commercialization, and future perspectives. Chemosphere, 286, 131490.
https://doi.org/10.1016/j.chemosphere.2021.131490
Sichel, C., Garcia, C., & Andre, K.,2011. Feasibility studies:
UV/chlorine advanced oxidation treatment for the removal of emerging
contaminants. Water Research, 45(19), 6371–6380.
https://doi.org/10.1016/j.watres.2011.09.025
Sornalingam, K., McDonagh, A., & Zhou, J. L.,2016. Photodegradation of
estrogenic endocrine disrupting steroidal hormones in aqueous systems:
Progress and future challenges. The Science of the Total Environment,
550, 209–224. https://doi.org/10.1016/j.scitotenv.2016.01.086
Suarez, S., Lema, J. M., & Omil, F.,2009. Pre-treatment of hospital
wastewater by coagulation–flocculation and flotation. Bioresource
Technology, 100(7), 2138–2146.
https://doi.org/10.1016/j.biortech.2008.11.015
Sui, Q., Huang, J., Deng, S., Yu, G., & Fan, Q.,2010. Occurrence and
removal of pharmaceuticals, caffeine and DEET in wastewater treatment
plants of Beijing, China. Water Research, 44(2), 417-426.
https://doi.org/10.1016/j.watres.2009.07.010
Sun, J., Wang, J., Zhang, R., Wei, D., Long, Q., Huang, Y., … & Li,
A.,2017. Comparison of different advanced treatment processes in
removing endocrine disruption effects from municipal wastewater
secondary effluent. Chemosphere, 168, 1-9.
https://doi.org/10.1016/j.chemosphere.2016.10.031
Teh, C. Y., Budiman, P. M., Shak, K. P. Y., & Wu, T. Y.,2016. Recent
advancement of Coagulation–Flocculation and its application in
wastewater treatment. Industrial & Engineering Chemistry Research,
55(16), 4363–4389. https://doi.org/10.1021/acs.iecr.5b04703
Templeton, M. R., Andrews, R. C., Hofmann, R., & Chauret, C.,2009.
Chlorine and UV disinfection of drinking water: Effectiveness for
inactivating antibiotic-resistant bacteria. Water Research, 43(19),
5087-5096. https://doi.org/10.1016/j.watres.2009.08.047
Tolboom, S. N., Carrillo-Nieves, D., de Jesús Rostro-Alanis, M., de la
Cruz Quiroz, R., Barceló, D., Iqbal, H. M., & Parra-Saldivar, R.,2019.
Algal-based removal strategies for hazardous contaminants from the
environment–a review. Science of The Total Environment, 665, 358-366.
https://doi.org/10.1016/j.scitotenv.2019.02.129
Tong, X., You, L., Zhang, J., He, Y., & Gin, K. Y. H.,2022. Advancing
prediction of emerging contaminants in a tropical reservoir with general
water quality indicators based on a hybrid process and data-driven
approach. Journal of Hazardous Materials, 430, 128492.
https://doi.org/10.1016/j.jhazmat.2022.128492
Van der Bruggen, B., & Vandecasteele, C.,2003. Removal of pollutants
from surface water and groundwater by nanofiltration: Overview of
possible applications in the drinking water industry. Environmental
Pollution, 122(3), 435-445.
https://doi.org/10.1016/S0269-7491(02)00308-1
Van der Bruggen, B., Mänttäri, M., & Nyström, M.,2008. Drawbacks of
applying nanofiltration and how to avoid them: a review. Separation and
purification technology, 63(2), 251-263.
https://doi.org/10.1016/j.seppur.2008.05.010
Van Vliet, M. T., Flörke, M., & Wada, Y.,2017. Quality matters for
water scarcity. Nature Geoscience, 10(11), 800-802.
https://doi.org/10.1038/ngeo3047
Vassallo, A., Kett, S., Purchase, D., & Marvasi, M.,2021.
Antibiotic-resistant genes and bacteria as evolving contaminants of
emerging concerns (e-CEC): is it time to include evolution in risk
assessment?. Antibiotics, 10(9), 1066.
https://doi.org/10.3390/antibiotics10091066
Vilhunen, S., & Sillanpää, M.,2010. Recent developments in
photochemical and chemical AOPs in water treatment: A mini-review.
Reviews in Environmental Science and Bio/Technology, 9(4), 323-330.
https://doi.org/10.1007/s11157-010-9217-8
Wang, D., Bolton, J. R., Andrews, S. A., & Hofmann, R.,2015.
UV/chlorine advanced oxidation for drinking water treatment: Kinetics of
micropollutant degradation. Water Research, 84,
116-125https://doi.org/10.1016/j.watres.2015.07.004
Wang, F., Xiang, L., Leung, K. S. Y., Elsner, M., Zhang, Y., Guo, Y.,
… & Tiedje, J. M.,2024. Emerging contaminants: a One Health
perspective. The Innovation.
https://doi.org/10.1016/j.xinn.2024.100612
Wang, J., Chen, C., & Chena, X.,2012. Ozonation of water containing
natural organic matter by the combination of ozonation and biologically
activated carbon. Journal of Environmental Sciences, 24(4), 643-649.
https://doi.org/10.1016/S1001-0742(11)60743-7
Wang, T., Zhai, Y., Zhu, Y., Li, C., & Zeng, G.,2018. A review of the
hydrothermal carbonization of biomass waste for hydrochar formation:
Process conditions, fundamentals, and physicochemical properties.
Renewable and Sustainable Energy Reviews, 90, 223–247.
https://doi.org/10.1016/j.rser.2018.03.071
Wee, S. Y., & Aris, A. Z.,2019. Occurrence and public-perceived risk of
endocrine disrupting compounds in drinking water. NPJ Clean Water, 2(1),
4. https://doi.org/10.1038/s41545-018-0029-3
Westerhoff, P., Yoon, Y., Snyder, S., & Wert, E.,2005. Fate of
endocrine-disruptor, pharmaceutical, and personal care product chemicals
during simulated drinking water treatment processes. Environmental
science & technology, 39(17), 6649-6663.
https://doi.org/10.1021/es0484799
Wiedner, K., Naisse, C., Rumpel, C., Pozzi, A., Wieczorek, P., &
Glaser, B.,2013. Chemical modification of biomass residues during
hydrothermal carbonization – What makes the difference, temperature or
feedstock? Organic Geochemistry, 54, 91–100.
https://doi.org/10.1016/j.orggeochem.2012.10.006
Wijekoon, K. C., McDonald, J. A., Khan, S. J., Hai, F. I., Price, W. E.,
& Nghiem, L. D.,2015. Development of a predictive framework to assess
the removal of trace organic chemicals by anaerobic membrane
bioreactor. Bioresource technology, 189, 391-398.
https://doi.org/10.1016/j.biortech.2015.04.034
Wu, Q., Li, Z., & Hong, H.,2012. Influence of types and charges of
exchangeable cations on ciprofloxacin sorption by montmorillonite.
Journal of Wuhan University of Technology-Mater Sci Ed, 27(3), 516–522.
https://doi.org/10.1007/s11595-012-0495-2
Wu, Q., Li, Z., Hong, H., Yin, K., & Tie, L.,2010. Adsorption and
intercalation of ciprofloxacin on montmorillonite. Applied Clay Science,
50(2), 204–211. https://doi.org/10.1016/j.clay.2010.08.001
Yang, J., Pan, B., Li, H., Liao, S., Zhang, D., Wu, M., & Xing,
B.,2015. Degradation of P-Nitrophenol on biochars: role of persistent
free radicals. Environmental Science & Technology, 50(2), 694–700.
https://doi.org/10.1021/acs.est.5b04042
Yao, Y., Gao, B., Chen, H., Jiang, L., Inyang, M., Zimmerman, A. R.,
Cao, X., Yang, L., Xue, Y., & Li, H.,2012. Adsorption of
sulfamethoxazole on biochar and its impact on reclaimed water
irrigation. Journal of Hazardous Materials, 209–210, 408–413.
https://doi.org/10.1016/j.jhazmat.2012.01.046
Yap, H. C., Pang, Y. L., Lim, S., Abdullah, A. Z., Ong, H. C., & Wu, C.
H.,2019. A comprehensive review on state-of-the-art photo-, sono-, and
sonophotocatalytic treatments to degrade emerging
contaminants. International Journal of Environmental Science and
Technology, 16, 601-628. https://doi.org/10.1007/s13762-018-1961-y
Yaroshchuk, A.,2000. Negative rejection of ions in pressure-driven
membrane processes. Advances in Colloid and Interface Science,
82(1-3), 93-117. https://doi.org/10.1016/S0001-8686(99)00030-1
Yu, Y., Yin, H., Huang, W., Peng, H., Lu, G., & Dang, Z.,2020. Cellular
changes of microbial consortium GY1 during decabromodiphenyl ether
(BDE-209) biodegradation and identification of strains responsible for
BDE-209 degradation in GY1. Chemosphere, 249, 126205.
https://doi.org/10.1016/j.chemosphere.2020.126205
Zhao, L., Cao, X., Zheng, W., Scott, J. W., Sharma, B. K., & Chen,
X.,2016. Copyrolysis of biomass with phosphate fertilizers to improve
biochar carbon retention, slow nutrient release, and stabilize heavy
metals in soil. ACS Sustainable Chemistry & Engineering, 4(3),
1630-1636. https://doi.org/10.1021/acssuschemeng.5b01570
Zhao, Y., Feng, D., Zhang, Y., Huang, Y., & Sun, S.,2016. Effect of
pyrolysis temperature on char structure and chemical speciation of
alkali and alkaline earth metallic species in biochar. Fuel Processing
Technology, 141, 54–60.
https://doi.org/10.1016/j.fuproc.2015.06.029
Zhao, Y., Gu, X., Gao, S., Geng, J., & Wang, X.,2012. Adsorption of
tetracycline (TC) onto montmorillonite: Cations and humic acid effects.
Geoderma, 183–184, 12–18.
https://doi.org/10.1016/j.geoderma.2012.03.004
Zheng, H., Wang, Z., Deng, X., Zhao, J., Luo, Y., Novak, J., Herbert,
S., & Xing, B.,2013. Characteristics and nutrient values of biochars
produced from giant reed at different temperatures. Bioresource
Technology, 130, 463–471.
https://doi.org/10.1016/j.biortech.2012.12.044
Zheng, H., Wang, Z., Zhao, J., Herbert, S., & Xing, B.,2013. Sorption
of antibiotic sulfamethoxazole varies with biochars produced at
different temperatures. Environmental Pollution, 181, 60–67.
https://doi.org/10.1016/j.envpol.2013.05.056