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Abstract 
  DC/DC converters are power electronic devices that utilize passive components such as resistors, capacitors, and 

inductors, along with transistors to control the system through a duty cycle. Traditionally modeled and controlled 

using integer-order calculus, these converters are now increasingly examined through the lens of fractional calculus, 

which introduces a fractional order for the controller, adding a new modulating variable beyond just the duty 

cycle.However, if only the controller operates in a fractional manner while the plant remains integer-order, the 

advantages of fractional calculus are limited, leading to challenges in flexibility, degree of freedom, and overall 

accuracy. To address these limitations,  proposing an Indirect Sliding Mode Adaptive Fractional Order Controller 

(FOSMC) for Fractional Order Systems in Single-Ended Primary Inductor Converters (FOSEPIC).Utilizing the 

Caputo fractional derivative, mathematical model is develop  to resolve the average state space equation of the DC/DC 

SEPIC converter. The Mittag-Leffler function, along with Lyapunov methods, is employed to analyze the system's 

dynamic stability. The performance of the proposed controller is assessed using the Integral Time Absolute Error 

(ITAE), yielding an ITAE of 0.09151, which is lower than that of the Fractional Order Model (0.1847) and the Integer 

Order Sliding Mode Controller (0.2532).Simulation results further demonstrate that the proposed strategy enhances 

efficiency to 98%. Overall, the FOSMC exhibits improved flexibility, a high degree of freedom, and superior accuracy, 

offering a fast transient response in controlling DC/DC converters. 

 Keywords: Fractional calculus, Single-Ended Primary Inductor Converters, Fractional order sliding mode control; 

Fractional order SEPIC converter. 

1. Introduction 
      "Non-integer calculus," frequently referred to as "fractional calculus," includes not only integer orders but also 

generalized functional orders such as fractional, irrational, and complex orders. This broadens its scope, positioning 

it as a form of generalized calculus [1]. The historical roots of fractional calculus date back to 1695, when Leibniz 

proposed half-order derivatives in correspondence with L'Hospital. The ability of fractional calculus to model the 

dynamics of various natural phenomena provides more accurate descriptions than traditional integer-order dynamic 

systems with the advantage of a high degree of freedom, nonlocality, flexibility, nonuniformity, and memory effect. 

Due to these advantages, its applications span multiple fields, including control engineering, biology, biomedical 

engineering, financial markets, and signal processing. In electrical engineering, fractional calculus is increasingly 
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recognized for its utility in modeling electrical equipment, wireless power transmission systems, and studying chaotic 

behaviors in fractional-order dynamic systems[2][3]. Recent advancements have led to practical designs in areas such 

as electrode-electrolyte polarization, viscoelastic fluids, and power converters. However, conventional integer-order 

models often fail to adequately represent the behavior of inductors and capacitors and uniform definitions of orders 

of differentiation [4][5]. DC-DC converters have demonstrated that output voltage gain can be controlled only by the 

duty cycle while modeling using integer order calculus. The stability and differentiability characteristics of integer-

order systems further enhance their appeal, as some non-differentiable functions. As well as integer-order models 

(IOM) can capture some characteristics, they often lack the necessary accuracy. These unique properties motivate 

ongoing research into the applications of fractional calculus across various physical and natural phenomena[6]. 

          Recent studies have illustrated the effectiveness of fractional calculus in controller design and modeling 

different nonlinear dynamic systems, particularly DC-DC converters[7][8][11]. 

           DC/DC (Direct Current to Direct Current) converters are power electronics devices composed of passive 

components like inductors, capacitors, resistors, and transistors functioning as switches. These converters are 

extensively used in various fields such as communications, industrial applications, and as power supplies for personal 

computers. Buck converters, boost converters, buck-boost converters, Cuk converters, and Single-Ended Primary 

Inductor Converter (SEPIC) converters are some of the most well-known DC/DC converters. Disturbances in most 

DC/DC converters arise from load variations, input voltage uncertainty, and electromagnetic interference generated 

from transistors, which complicate their control. Among these, the SEPIC converter is non-inverting, maintaining a 

positive output when the input is positive, and functions as both a step-up (BOOST) and step-down (BUCK) converter. 

It is particularly useful in applications requiring low ripple current at both input and output terminals and off-grid 

photovoltaic systems such as batteries and PV[9]. However, the SEPIC converter exhibits a non-linear variable 

structure with non-minimum phase characteristics, and instability, and is a time-varying system. Due to its non-

minimum-phase nature (with zeros or poles at the origin), direct output voltage control is not feasible[10]. 

Consequently, to manage the output voltage of a SEPIC converter, the approach involves directly controlling the input 

current through the duty cycle and indirectly influencing the output voltage. Various controllers, such as PWM, PID, 

fuzzy logic controller, and sliding mode controls, are employed to regulate the SEPIC converter's operation[9]. 

        A type of controller design known as a nonlinear variable structure (NVS) utilizes a nonlinear control rule based 

on a set of switching variable signals[1][11] [12]. Sliding mode control is closely related to NVS, as it can be used to 

design NVS controllers that provide stable control and smooth transitions between different control behaviors[13]. 

This approach can be applied to SEPIC converters to improve stability, adaptability, and efficiency. Given the intricate 

behaviors of the SEPIC converter, a sliding mode controller is selected among the possible options. The nonlinear 

behavior of the SEPIC converter[14], indicated by a specific characteristic, aligns with the requirements met by the 

sliding mode controller, making it an ideal choice. This control method allows the converter to operate in two modes: 

step-up (boost) when the reference voltage is greater than the input voltage, and step-down (buck) when the reference 

voltage is less than the input voltage, all with a single controller. Which give new circuit topologies based on these 

elements continue to emerge, although their characteristics remain an active area of research [15][16][11][17] and, 

enhance the analysis of their dynamic behavior[18][12]. 



       Sliding Mode Control (SMC) is a highly effective strategy for Controlling uncertainties in both linear and 

nonlinear systems. Known for its rapid dynamics and excellent transient response, SMC offers robustness against 

external disturbances and parameter variations. The primary goal of SMC is to guide system states to a predefined 

manifold, called the sliding surface, and to maintain this state despite uncertainties [19][20]. The design of SMC 

consists of two phases: (i) the Reaching Phase and (ii) the Sliding Phase. In the Reaching Phase, system states are 

driven to the sliding manifold in finite time, but this phase can be sensitive to disturbances and parameter variations. 

To mitigate this sensitivity, various methods have been proposed to minimize or eliminate the reaching phase. During 

the Sliding Phase, the closed-loop system enters a sliding motion where robustness and order reduction become 

critical. In this phase, trajectories are less sensitive to disturbances and parameter variations, enhancing the robustness 

of SMC. However, it is important to note that robustness is not guaranteed during the Reaching Phase[21][22][23]. 

         When traditional integer-order SMC methods are applied to fractional-order systems, they effectively reject 

disturbances but often suffer from chattering a significant drawback. The fundamental feature of SMC is that the state 

slides along the sliding surface. Conventional SMC typically employs a fixed, predefined sliding surface, which can 

lead to extended reaching times if the initial state is far from the surface, ultimately degrading control performance. 

Increasing the discontinuous control gain may shorten the reaching phase but can also exacerbate chattering issues 

[19][24][25]. 

       Fractional calculus has shown promise in addressing the chattering problem and improving control performance. 

By incorporating fractional-order elements into SMC design, the chattering issue can be mitigated, and the response 

time of the closed-loop system can be enhanced. Fractional-order controllers provide additional design parameters, 

such as adjustable non-integer differentiator and integrator orders, allowing for the tuning of the fractional order to 

optimize dynamic response while preserving the advantages of conventional sliding mode control(SMC) 

[26][27][28][29][30]. 

       Despite the demonstrated advantages of fractional calculus in various applications, its specific implementation in 

controlling DC-DC converters, particularly the SEPIC converter, remains underexplored. While existing studies have 

utilized fractional calculus in controller design, few have focused on its ability to manage the complex nonlinearities 

and non-minimum phase characteristics inherent in SEPIC converters. This research aims to fill this gap by 

demonstrating how an Indirect Sliding Mode Adaptive Fractional Order Controller (FOSMC) can effectively enhance 

the control performance and reliability of the SEPIC converter, ultimately contributing to more efficient power 

conversion systems. 

2. Proposed  Methods 

        In this study, the proposed a Fractional Order Sliding Mode Controller (FOSMC) designed specifically for a 

Fractional Order SEPIC Converter. The proposed method enhances traditional SMC by incorporating fractional 

calculus principles, which address the limitations of conventional integer-order controllers, particularly chattering and 

performance degradation during the reaching phase. 

I. Grunwald-Letnikov Fractional-Order Derivative:The Grunwald-Letnikov fractional-order derivative is 

defined as:  
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When the sign of α is negative, this equation becomes a fractional-order integral[31][32]. 

II.Riemann-Liouville (RL) Fractional-Order Integral: Cauchy’s formula for repeated integration reduces n-fold 

integration of a function 𝑓(𝑡)f(t) to a single integral: 
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This can be generalized to a fractional-order integral: 
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where Γ(𝑛 is the Euler’s  

The left Riemann-Liouville fractional-order derivative of a function 𝑓(𝑡) is defined as: 

 1

0

1

( )
( ) ( )( )

t n

t n
f t f dtJ




 

− −

 −
= −

 (4) 

where:n=⌈α⌉ is the smallest integer greater than or equal to 𝛼, Γ is the gamma function,𝑓(𝑛) (τ) is the n-th derivative 

of 𝑓 is the lower limit of the integral.The right Riemann-Liouville derivative is: 
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         Where b is the upper limit of the integral. 

III. Caputo Fractional Derivative: The Caputo fractional-order derivative modifies the Riemann-Liouville 

definition to allow for broader applications: The left Caputo fractional-order derivative is given by:  
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   Where n=⌈α⌉ is the smallest integer greater than or equal to 𝛼,Γ is the gamma function,𝑓(n)(𝜏) is the n-th derivative 

of f,𝑎 a is the lower limit of the integral.The right Caputo derivative is defined similarly: 
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where  is the upper limit of the integral.  

IV.Mittag-Leffler Function 

     The one-parameter Mittag-Leffler function is crucial for modeling physical processes using fractional calculus: 
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2.1.Properties of GL, RL, and Caputo Fractional Order Derivatives 

               Essential characteristics of fractional-order operators consist of: 

I. Semigroup and Commutative Property 
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II. Consistency Property: 
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III. Constant Property: 
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IV. Initial Conditions: 

If  𝑓(𝑠)(0)=0f (s) (0)=0 for 𝑠=𝑛,+1,…,𝑞s=n,n+1,…,q. 

2.2. Fractional Order Controller Design 

Fractional-order systems, despite lacking traditional state variables, can be represented similarly to integer-order 

systems. This section focuses on both multiple-input, multiple-output (MIMO) systems and single-input, single-output 

(SISO) systems, specifically within the context of the fractional-order SEPIC converter model. 

Let 𝛼 represent the fractional order, constrained by 0<𝛼<1. The state variables for the fractional-order system are 

denoted as 𝑥1(𝑡),𝑥2(𝑡),𝑥3(𝑡), and 𝑥4(𝑡) with 𝑎,𝑏,𝑑,𝑓and 𝑔 serving as system parameters. 

While fractional-order systems do not possess conventional state variables, it is feasible to derive representations akin 

to those of integer-order systems. This section first examines the general case of MIMO systems before addressing 

SISO systems. The fractional-order SEPIC (FOSEPIC) converter model is described using fractional calculus. 

Notably, when 𝛼=1, the model corresponds to a conventional SEPIC converter. 

Table 1.Description for variables on the block diagram 

No                                          Variable  Description  
   
1 x1 First inductor current  

2 x2 Second inductor current 

3 X3 First capacitor voltage 

4 X4 Output voltage  

5 Iref Reference current  

6 Vref Reference voltage  

7 Vin Input voltage 

8 U Control law  

 

 



Figure 1: Block diagram for proposed FOSMC controller and FOSEPIC converter 

2.3.SEPIC Converter Models 

     The conventional SEPIC converter is described by the following equations: 
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      The fractional-order SEPIC converter system is defined as: 
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       The output voltage is indirectly controlled by the input inductor current through the x1state variable[33]. 

2.4.Sliding Mode Control 

        To achieve control, the sliding surface function is defined as: 
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      where 𝑥𝑟 denotes the reference for the 𝑥1 state variable. The inductor current reference can be generated using a 

proportional-integral (PI) controller without a compensation term: 
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         Here, λ and 𝜖 are the proportional and integral gains, respectively. The derivative can be expressed as: 
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   By applying the properties of fractional calculus, we can obtain: 
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2.5.Stability of the Sliding Dynamics 

        In a fractional differential system described by 𝐷𝑡𝛼𝑥(𝑡)=𝑓(𝑡) where 𝑥=0 is the equilibrium point,thefunction 𝑓(𝑡) 

is assumed to be Lipschitz continuous. Under these conditions, the solutions of the system exhibit Mittag-Leffler 

stability. This means that if the initial state is close to the equilibrium, the solution will remain close over time, 

highlighting the system's ability to return to equilibrium despite perturbations. This behavior is particularly important 

in applications involving fractional dynamics, where traditional stability concepts may not apply.The reaching law is 

designed to ensure the stability of the closed-loop system: 
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                   where 𝜌>0ρ>0 and 𝛾>0γ>0. 

2.6.Control Law 

     Equating the fractional-order system dynamics with the reaching law leads to the control law: 
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From the SEPIC converter dynamics, the obtained equqtion: 
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              The control law can be expressed as: 

 𝑢(𝑡) = 1 −
𝛼(𝑥3(𝑡)+𝑥4(𝑡)

𝑣𝑖𝑛
 (21) 

     This controller is applicable for both fractional-order and conventional SEPIC converters, depending on the value 

of α. When 0<𝛼<10<α<1, it functions as a fractional-order sliding mode controller, and when 𝛼=1, it behaves as a 

conventional sliding mode controller.  

3. Results and Discussion 

       In this section, the presented simulation results of the modeled system to demonstrate the effectiveness of the 

proposed fractional-order sliding-mode control (SMC) scheme for the fractional-order nonlinear system. The 

theoretical considerations are validated through simulations conducted using the MATLAB/SIMULINK program. 

The performance of the proposed control method is evaluated based on its ability to regulate voltage under four varying 

conditions are Variable input voltage, Variable controller order, Variable system orders, Different load conditions. 

      The system and control parameters are employed here, with the simulation parameters detailed in Table 2. 

Table 2.System and control parameters 

No Parameters Value used 

1 Input voltage(vin) 30V and 60V 

2 Capacitors(C1, C2) 330µF 

3 Inductors(L1, L2) 800µH 

4 Vref 48V 

5 Prop/int gains(λ, ϵ) 25 and 10 

6 load1 (RL1) 50Ω 

7 load2 (RL2) 33.33Ω 

8 input voltages 30V,60V 

   

3.1.Steady-State Performance 

       Figure 1 illustrates the steady-state results for the input voltage (𝑣𝑖𝑛 ), output voltage (𝑣𝑜𝑢t ), and inductor currents 

(𝑖𝐿1)  and 𝑖𝐿2 ) with a load resistance (𝑅𝐿 ) of 50Ω in both buck and boost modes. 

      From Figures 1(a) and 1(c), it is evident that the output voltage is consistently maintained at 48V, indicating that 

the controller effectively regulates the output voltage to its reference value. Additionally, the inductor currents shown 

in Figures 1(b) and 1(d) demonstrate the performance in both boost and buck modes of operation.Overall, the 

converter, utilizing the proposed control method, successfully operates in both buck and boost modes, as depicted in 

Figure 1. 



 

Figure 2.Steady-state performance of the FOSEPIC converter 

      Figure 2 presents the steady-state performance of the FOSEPIC converter, showcasing the output voltage and 

inductor currents in both boost and buck modes. Specifically, panel (a) illustrates the output voltage for the boost 

mode, while panel (b) displays the inductor current for the same mode. Panels (c) and (d) depict the output voltage 

and inductor current for the buck mode, respectively. The results indicate that the output voltage remains consistently 

regulated at 48V across both modes, demonstrating the effectiveness of the proposed control method in maintaining 

performance under varying operational conditions. 



 

Figure 3.Fractional-order sliding mode controller (FOSMC) for the FOSEPIC converter 

       Figure 3 illustrates the fractional-order sliding mode controller (FOSMC) for the FOSEPIC converter, featuring 

the sliding surfaces and controller responses in both boost and buck modes. Panel (a) displays the FOSMC for the 

boost mode, while panel (b) shows the sliding surface for the boost mode. Similarly, panel (c) presents the FOSMC 

for the buck mode, and panel (d) depicts the sliding surface for the buck mode. This figure highlights the steady-state 

responses of the input voltage, output voltage, and inductor currents with a load resistance (𝑅𝐿) of 50Ω. 

3.2. Performance Under Input Voltage Variations 

       Figure 4 shows the dynamic responses of the inductor current (𝑖𝐿1 ) and output current (𝑖𝑜𝑢i out) following 

changes in the input voltage (𝑣𝑛  ),with a reference voltage 𝑉𝑟𝑒𝑓 ) of 48V and a load resistance of 50Ω. The results 

correspond to variations in input voltage from 60V to 30V and then back from 30V to 60V. Initially, the converter 

operates in buck mode at 𝑣𝑖𝑛=60𝑉. When the input voltage decreases to 30V, the converter switches from buck mode 

to boost mode. Conversely, when the input voltage increases back to 60V, the operation shifts from boost mode to 

buck mode. During these transitions, the input current adjusts accordingly to ensure that the power delivered to the  

load remains constant, as illustrated in Figure 4 for both operating modes. Notably, the output voltage successfully 

maintains its reference level at 48V in both modes. 



 

Figure 4. Input and Output Current for FOSEPIC Converter 

         Figure 4 presents the input and output currents for the FOSEPIC converter, with panel (a) depicting the currents 

during boost mode operation and panel (b) showing the currents during buck mode operation. It is evident that there 

are small, undesired ripples in the output current, likely resulting from noise disturbances within the system. Despite 

these ripples, the output voltage is consistently regulated at 48V in both operating modes. To maintain the load power 

amidst variations in input voltage, adjustments to the input current are necessary. 

3.3.Performance Under Load Variations 

      The proposed control strategy's performance was further evaluated under load variations ranging from 50% to 

70%. Figure 5 illustrates the dynamic responses of the output voltage in response to abrupt changes in load resistance, 

with a reference voltage (𝑉𝑟𝑒𝑓 ) set at 48V. The load was switched from 50Ω to 33.33Ω and then back from 33.33Ω 

to 50Ω. Figures 6 and 7 display the dynamic responses during these load changes while the converter operates in both 

boost and buck modes, respectively.Notably, the output voltage remains largely unaffected by these load variations, 

demonstrating the controller's capability to regulate output voltage effectively. Although small overshoots and 

undershoots occur during the transient periods, the output voltage stabilizes quickly, confirming the robustness of the 

proposed control strategy under varying load conditions. 



Figure 4. Input and Output Power for FOSEPIC Converter 

 

Figure 5. Input and Output Power for FOSEPIC Converter 

       Figure 5. Input and Output Power for FOSEPIC Converter (a)Output and Input Power for Boost Mode of 

Operation (b)Output and Input Power for Buck Mode of Operation. 

 

Figure 6.FOSEPIC Converter Under Load Variations for Boost Mode of Operation. 



 

Figure 7. FOSEPIC Converter Under Load Variations for Buck Mode of Operation 

         During load variations, the two operating modes exhibit distinct behaviors regarding peak-to-peak output 

voltage. In boost mode, the converter demonstrates lower peak-to-peak values, whereas in buck mode, the peak-to-

peak values are higher. Additionally, the response in buck mode shows increased peak-to-peak values for both output 

voltage and output current. Load variations in boost mode, with load resistance ranging from 1Ω to 3kΩ, and in buck 

mode, with a range of 1Ω to 58Ω, yield consistent results for the FOSEPIC converter with orders of (0.25, 0.35, 0.52, 

0.65), effectively regulating around a reference voltage (𝑉𝑟𝑒𝑓 ) of 48V. 

3.4.Performance Under Variation of Plant Orders 

         In scenarios involving variations in plant orders, the fractional-order sliding mode controller (FOSMC) with an 

order of 0.35 successfully regulates the output voltage at 𝑉𝑟𝑒𝑓 =48V, as demonstrated in Figure 8. This indicates the 

controller's robustness in maintaining voltage regulation across different system dynamics. 

 

Figure 8. Output Voltage under Variation of FOSEPIC Orders 



           Figure 8 displays the output voltage variations corresponding to different combinations of FOSEPIC orders. 

Panel (a) illustrates the response for the combination of orders [Yellow] (0.6, 0.28, 0.4, 0.9), while panel (b) shows 

[Magenta] (0.9, 0.5, 0.4, 0.9). Panel (c) presents the output for [Green] (0.17, 0.25, 0.35, 0.69), and panel (d) displays 

the results for [Red] (0.75, 0.5, 0.2, 0.85). These results highlight how different order combinations affect the output 

voltage stability and regulation. 

3.5.Comparison of FOSMC and SMC for FOSEPIC Converter 

       In the comparison of the fractional-order sliding mode controller (FOSMC) and the traditional sliding mode 

controller (SMC) for the FOSEPIC converter, as shown in  figure 9 for boost mode, the FOSMC effectively minimizes 

oscillations that are prevalent in the SMC for the SEPIC configuration. This enhanced stability is similarly observed 

in the buck mode operation, indicating the superior performance of the FOSMC in maintaining output voltage 

regulation across varying operating conditions. 

 

     Figure 9. Comparison Output Voltage of SEPIC and FOSEPIC converter with FOMSC and IOSMC for Buck 

Mode Operation 

      Figure 9. Comparison Output Voltage of SEPIC and FOSEPIC converter with FOMSC and IOSMC for Buck 

Mode Operation (a)[Red] FOSMC with FOM (b)[Blue] IOSMC with IOM(c)[Black] FOSMC with IOM 

(d)[Magenta] IOSMC with FOM. 

 

Figure 10. Comparison of Output Voltage for SEPIC and FOSEPIC Converters with FOSMC and IOSMC in Boost 

Mode Operation 



          Figure 10 presents a comparison of output voltage for both SEPIC and FOSEPIC converters under boost mode 

operation, highlighting the performance of different controllers. Panel (a) displays the results for the FOSMC with 

fractional order model (FOM) in [Red], while panel (b) shows the IOSMC with integer order model (IOM) in [Blue]. 

Panel (c) illustrates the FOSMC with IOM in [Black], and panel (d) depicts the IOSMC with FOM in [Magenta]. 

In both Figures 9 and 10, oscillations in the output voltage can be observed during the comparison between FOSMC 

and traditional SMC. The differentiation order is a critical factor, with integer orders used in IOM systems and 

fractional orders in FOM systems. This flexibility in fractional orders allows for richer dynamics and better tuning 

capabilities, making FOM an attractive option for control strategies. 

      Fractional-order control has emerged as a robust approach, effectively managing system uncertainties and 

disturbances while incorporating nonlinear dynamics. The combination of fractional-order control with SMC leads 

to the development of fractional-order sliding mode control (FOSMC), which improves upon traditional integer-

order SMC. 

4. Conclusion 

           This study successfully introduces a Fractional Order Sliding Mode Control (FOSMC) strategy with a 

simplified sliding surface function tailored for DC-DC FOSEPIC converters. By leveraging the input inductor current 

error, the proposed control method enables indirect regulation of output voltage, which significantly simplifies both 

the simulation process and the mathematical modeling involved. Extensive simulations conducted in 

MATLAB/SIMULINK under various operational conditions validate the performance of the FOSMC, showcasing its 

superior flexibility and enhanced control compared to traditional integer-order methods. 

Additionally, this research pioneers the development of fractional-order models for SEPIC converters, offering a 

comprehensive framework that accurately captures their operational characteristics. The findings reveal that SEPIC 

converters equipped with fractional-order inductors and capacitors exhibit markedly improved dynamic performance, 

characterized by reduced overshoot and shorter regulation times when compared to conventional designs. 

Overall, the integration of fractional-order control into sliding mode strategies not only enhances the robustness and 

performance of power conversion systems but also opens new avenues for future research and application. This 

innovative approach holds significant promise for advancing the efficiency and reliability of power electronics, 

particularly in the context of renewable energy systems and electric vehicle technologies. The results underscore the 

potential of fractional-order control as a key enabler for next-generation power management solutions, paving the way 

for more adaptive and high-performance systems in the field. 
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