Increased oceanic uptake of CO2 due to rising anthropogenic emissions has caused lowered pH levels (ocean acidification) that are hypothesized to inhibit biotic calcification and reduce the export of total alkalinity (AT) as carbonate minerals from the surface ocean. This “CO2-biotic calcification feedback” is a negative feedback on atmospheric CO2, as elevated levels of surface AT increase the ocean’s capacity to uptake CO2. We detect signatures of this feedback in the global ocean for the first time using repeat hydrographic measurements and seawater property prediction algorithms. Over the course of the past 30 years, we find an increase in global surface AT of 0.072 ± 0.023 µmol kg-1 yr-1, which would have caused approximately 20 Tmol of additional AT to accumulate in the surface ocean. This finding suggests that anthropogenic CO2 emissions are measurably perturbing the cycling of carbon on a planetary scale by disrupting biological patterns. More observations of AT would be required to understand the effects of this feedback on a regional basis and to fully characterize its potential to reduce the efficiency of marine carbon dioxide removal technology.