loading page

miR395 modulates DNA-primase-derived ToLCNDV resistance in melon plants in an environment-dependent manner
  • +8
  • Sáez C.,
  • Andrea Hernandez-Azurdia,
  • Alicia Sifres,
  • Aragonés V.,
  • Joan Márquez-Molins,
  • Pérez-de-Castro A.,
  • Narinder P.S. Dhillon,
  • Darós J.A.,
  • López C.,
  • Maria Belen Pico-Sirvent,
  • Gustavo Gomez
Sáez C.
Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV
Author Profile
Andrea Hernandez-Azurdia
Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV
Author Profile
Alicia Sifres
Universitat Politècnica de València (UPV
Author Profile
Aragonés V.
Consejo Superior de Investigaciones Científicas (CSIC) -Universitat Politécnica de Valéncia
Author Profile
Joan Márquez-Molins
Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV
Author Profile
Pérez-de-Castro A.
Universitat Politècnica de València (UPV
Author Profile
Narinder P.S. Dhillon
Kasetsart University
Author Profile
Darós J.A.
Consejo Superior de Investigaciones Científicas (CSIC) -Universitat Politécnica de Valéncia
Author Profile
López C.
Universitat Politècnica de València (UPV
Author Profile
Maria Belen Pico-Sirvent
Universitat Politècnica de València (UPV
Author Profile
Gustavo Gomez
Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV

Corresponding Author:gustavo.gomez@csic.es

Author Profile

Abstract

Climate change has favored the emergence of the Tomato leaf curl New Delhi virus (ToLCNDV) as a threat to melon production in the Mediterranean region. Deciphering the mechanisms regulating melon-ToLCNDV interactions is crucial in developing resistant varieties in the current climatic scenario. In this regard, DNA primase has recently been proposed as a recessive resistance gene for ToLCNDV. Here, we explored the molecular basis of ToLCNDV resistance in melon, focusing on the DNA-primase gene and the stress-responsive miR395. Using virus-induced gene silencing (VIGS) and transient expression assays, we show that DNA-primase silencing reduces ToLCNDV accumulation in susceptible plants, whereas overexpression increases the viral load in a resistant cultivar. Computational predictions, validated by transient expression analysis identified miR395 as a regulator of DNA-primase expression. Next, we found that adverse environmental conditions, such as salinity and drought, increase miR395 accumulation, downregulating DNA-primase and enhancing ToLCNDV resistance in susceptible melon cultivars. This study provides the first evidence that environmental conditions directly affect geminivirus infection dynamics via miR395-mediated DNA-primase regulation. These findings underscore the potential of targeting DNA-primase for breeding ToLCNDV-resistant melon varieties and highlight the environment influence on virus-host interactions, offering insights for sustainable disease management in crops.