not-yet-known not-yet-known not-yet-known unknown References 1. Galli, S. J. & Tsai, M. IgE and mast cells in allergic disease. Nature Medicine 18 , 693–704 (2012). 2. Bachert, C., Maurer, M., Palomares, O. & Busse, W. W. What is the contribution of IgE to nasal polyposis? Journal of Allergy and Clinical Immunology 147 , 1997–2008 (2021). 3. Maurer, M. et al. Mast cells drive IgE-mediated disease but might be bystanders in many other inflammatory and neoplastic conditions. J Allergy Clin Immun 144 , S19–S30 (2019). 4. Church, M. K., Kolkhir, P., Metz, M. & Maurer, M. The role and relevance of mast cells in urticaria. Immunol Rev 282 , 232–247 (2018). 5. Altrichter, S. et al. Total IgE as a Marker for Chronic Spontaneous Urticaria. Allergy Asthma Immunol Res 13 , 206–218 (2021). 6. Maurer, M. et al. Immunoglobulin E-Mediated Autoimmunity. Frontiers in Immunology 9 , 689 (2018). 7. McNeil, B. D. et al. Identification of a mast cell specific receptor crucial for pseudo-allergic drug reactions. Nature 519 , 237–241 (2014). 8. Lansu, K. et al. In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nature chemical biology 13 , 529–536 (2017). 9. McNeil, B. D. MRGPRX2 and Adverse Drug Reactions. Front. Immunol. 12 , 676354 (2021). 10. Komi, D. E. A., Wöhrl, S. & Bielory, L. Mast Cell Biology at Molecular Level: a Comprehensive Review. Clin Rev Allerg Immu 58 , 342–365 (2019). 11. Rescigno, M. Intestinal microbiota and its effects on the immune system. Cellular Microbiology 16 , 1004–1013 (2014). 12. Tan, J. et al. The Role of Short-Chain Fatty Acids in Health and Disease. in vol. 121 91–119 (Elsevier). 13. Koh, A., Vadder, F. D., Kovatcheva-Datchary, P. & Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 165 , 1332–1345 (2016). 14. Hee, B. van der & Wells, J. M. Microbial Regulation of Host Physiology by Short-chain Fatty Acids. Trends Microbiol 29 , 700–712 (2021). 15. Kespohl, M. et al. The Microbial Metabolite Butyrate Induces Expression of Th1-Associated Factors in CD4\$\textbackslashmathplus\$ T Cells. Front Immunol 8 , 1036 (2017). 16. Thio, C. L.-P., Chi, P.-Y., Lai, A. C.-Y. & Chang, Y.-J. Regulation of type 2 innate lymphoid cell–dependent airway hyperreactivity by butyrate. Journal of Allergy and Clinical Immunology 142 , 1867-1883.e12 (2018). 17. Chen, L. et al. Microbiota Metabolite Butyrate Differentially Regulates Th1 and Th17 Cells’ Differentiation and Function in Induction of Colitis. Inflamm Bowel Dis 25 , 1450–1461 (2019). 18. Kim, S.-H., Cho, B.-H., Kiyono, H. & Jang, Y.-S. Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer’s patches. Sci Rep-uk 7 , 3980 (2017). 19. Sanchez, H. N. et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat Commun 11 , 60 (2020). 20. Schulthess, J. et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity 50 , 432-445.e7 (2019). 21. Kaisar, M. M. M., Pelgrom, L. R., Ham, A. J. van der, Yazdanbakhsh, M. & Everts, B. Butyrate Conditions Human Dendritic Cells to Prime Type 1 Regulatory T Cells via both Histone Deacetylase Inhibition and G Protein-Coupled Receptor 109A Signaling. Frontiers in Immunology 8 , 1429 (2017). 22. Luu, M. et al. Regulation of the effector function of CD8\$\textbackslashmathplus\$ T cells by gut microbiota-derived metabolite butyrate. Sci Rep-uk 8 , 14430 (2018). 23. Nastasi, C. et al. Butyrate and propionate inhibit antigen-specific CD8\$\textbackslashmathplus\$ T cell activation by suppressing IL-12 production by antigen-presenting cells. Sci Rep-uk 7 , 14516 (2017). 24. Schilderink, R., Verseijden, C. & Jonge, W. J. de. Dietary Inhibitors of Histone Deacetylases in Intestinal Immunity and Homeostasis. Frontiers in Immunology 4 , 226 (2013). 25. Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences 111 , 2247–2252 (2014). 26. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences 107 , 21931–21936 (2010). 27. Zentner, G. E., Tesar, P. J. & Scacheri, P. C. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res 21 , 1273–1283 (2011). 28. Whyte, W. et al. Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes. Cell 153 , 307–319 (2013). 29. Davie & James, R. Inhibition of Histone Deacetylase Activity by Butyrate. The Journal of Nutrition 133 , 2485S-2493S (2003). 30. Licciardi, P., Ververis, Hiong & Karagiannis. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics Targets Ther Volume 7 , 47 (2013). 31. Eberharter, A. & Becker, P. B. Histone acetylation: a switch between repressive and permissive chromatin. Embo Rep 3 , 224–229 (2002). 32. Gallinari, P., Marco, S. D., Jones, P., Pallaoro, M. & Steinkühler, C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Research 17 , 195–211 (2007). 33. Folkerts, J. et al. Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI‐mediated signaling. Allergy 75 , 1966–1978 (2020). 34. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21 , 381–395 (2011). 35. Lovén, J. et al. Selective Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers. Cell 153 , 320–334 (2013). 36. Zhuang, H.-H., Qu, Q., Teng, X.-Q., Dai, Y.-H. & Qu, J. Superenhancers as master gene regulators and novel therapeutic targets in brain tumors. Exp. Mol. Med. 55 , 290–303 (2023). 37. Nguyen, T. et al. HDAC inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models. J. Clin. Investig. 130 , 3699–3716 (2020). 38. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468 , 1067–1073 (2010). 39. Jiang, G., Deng, W., Liu, Y. & Wang, C. General mechanism of JQ1 in inhibiting various types of cancer. Mol. Med. Rep. 21 , 1021–1034 (2020). 40. Bounab, Y. et al. Proteomic analysis of the SH2 domain-containing leukocyte protein of 76 kDa (SLP76) interactome in resting and activated primary mast cells [corrected]. Mol. Cell. Proteom. : MCP 12 , 2874–89 (2013). 41. Iyer, V. S. et al. Modulating T-cell activation with antisense oligonucleotides targeting lymphocyte cytosolic protein 2. J. Autoimmun. 131 , 102857 (2022). 42. Saitoh, S. et al. LAT is essential for FcεRI-mediated mast cell activation. Immunity 12 , 525–535 (2000). 43. Suzuki, R. et al. Molecular Editing of Cellular Responses by the High-Affinity Receptor for IgE. Science 343 , 1021–1025 (2014). 44. Li, W. & Sun, Z. Mechanism of Action for HDAC Inhibitors—Insights from Omics Approaches. Int J Mol Sci 20 , 1616 (2019). 45. Kim, Y. J. et al. HDAC inhibitors induce transcriptional repression of high copy number genes in breast cancer through elongation blockade. Oncogene 32 , 2828–2835 (2013). 46. Greer, C. B. et al. Histone Deacetylases Positively Regulate Transcription through the Elongation Machinery. Cell Reports 13 , 1444–1455 (2015). 47. MacDonald, C. A., Qian, H., Pundir, P. & Kulka, M. Sodium butyrate supresses malignant human mast cell proliferation, downregulates expression of KIT and promotes differentiation. Front. Allergy 4 , 1109717 (2023). 48. Wang, Z. et al. Genome-wide Mapping of HATs and HDACs Reveals Distinct Functions in Active and Inactive Genes. Cell 138 , 1019–1031 (2009). 49. Rada-Iglesias, A. et al. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes. Genome Res 17 , 708–719 (2007). 50. Sanchez, G. J. et al. Genome-wide dose-dependent inhibition of histone deacetylases studies reveal their roles in enhancer remodeling and suppression of oncogenic super-enhancers. Nucleic Acids Res 46 , 1756–1776 (2017). 51. Gryder, B. E. et al. Chemical genomics reveals histone deacetylases are required for core regulatory transcription. Nature Communications 10 , 3004 (2019). 52. Cildir, G. et al. Genome-wide Analyses of Chromatin State in Human Mast Cells Reveal Molecular Drivers and Mediators of Allergic and Inflammatory Diseases. Immunity 51 , 949-965.e6 (2019). 53. Heinz, S. et al. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Molecular Cell 38 , 576–589 (2010). 54. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10 , 1523 (2019). 55. Stadhouders, R. et al. Epigenome analysis links gene regulatory elements in group 2 innate lymphocytes to asthma susceptibility. J Allergy Clin Immun 142 , 1793–1807 (2018). 56. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12 , 357–360 (2015). 57. Kuehn, H. S., Radinger, M. & Gilfillan, A. M. Measuring Mast Cell Mediator Release. Curr Protoc Immunol 91 , 7.38.1-7.38.9 (2010).