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Abstract

Mast cells are key drivers of allergic inflammation. We have previously shown that
butyrate, a short-chain fatty acid derived from dietary fibers, inhibits human mast cell
activation and degranulation. Here, we characterized the mechanisms underlying
butyrate-mediated control of mast cell activity. To this end, we assessed the genome-
wide impact of butyrate, a histone deacetylase (HDAC) inhibitor, on the epigenomic
control of mast cell gene expression by integrating transcriptome and histone acetylation
(H3K27Ac) profiles obtained from butyrate-treated primary human mast cells. Butyrate
affected a selective set of genes and gene regulatory elements in mast cells. Most
prominent was the hypo-acetylation of promoter regions of highly expressed genes and
super-enhancers controlling key mast cell identity genes. Perturbation of super-enhancer
activity via pharmacological bromodomain inhibition suppressed degranulation of primary
human mast cells, evoking a repression of key mast cell identity genes that resembled
the inhibitory effects of butyrate. Our data indicate that butyrate inhibits human mast cell
activity via a surprisingly selective targeting of super-enhancers to regulate the core mast
cell transcriptional program.



Abbreviations
ChIP-Seq: Chromatin Immunoprecipitation coupled to high-throughput Sequencing
HAT: Histone-acetyltransferase

HDAC: Histone deacetylase

HDAC:: Histone deacetylase inhibitor
Mb: Megabase

MC: Mast cell

PBMC: Peripheral blood mononuclear cell-derived human mast cell
RNA-seq: RNA sequencing

SCFA: Short-chain fatty acid

SE: Super-enhancer

SP: Substance P

TE: Typical-enhancer

TSS: Transcription Start Site

RPKM: Reads Per Kilobase per Million

Conflicts of interest relevant to this work
The authors have declared that no conflict of interest exists.



Introduction

Mast cells are major effector cells of the immune system. They reside in virtually all
vascularized tissues, especially those in direct contact with the external environment.
Mast cells mediate IgE-associated type 2 immune responses, which have been implicated
in anti-parasite immunity but also allergies, asthma, chronic rhinosinusitis with nasal
polyps, and urticaria’®. Allergens can crosslink allergen-specific IgE bound to the high-
affinity IgE receptor (FceRI) on the mast cell surface, resulting in their degranulation’. This
causes the immediate release of preformed granule mediators such as histamine,
heparin, and certain proteases, followed by de novo synthesis and release of various lipid
mediators and cytokines. More recently, the Mas-related G protein-coupled receptor X2
(MRGPRX2) expressed on mast cells was shown to participate in IgE-independent mast
cell activation, resulting in drug-induced pseudo-allergic reactions (e.g. against
antibiotics)’~°.

Mast cell maturation, phenotype and function are determined by gene expression
programs controlled by endogenous and microenvironmental factors'®. These include the
microbiome, which directly contributes to the development and maturation of the immune
system'. Short chain fatty acids (SCFAs) including butyrate, propionate and acetate -
derived from bacterial fermentation of dietary fibers - are considered key metabolites in
the regulation of host physiology and pathophysiology'>-'4. Butyrate critically affects
differentiation and function of many lymphocyte populations as well as myeloid cells such
as macrophages and dendritic cells'®-23.

SCFAs, particularly butyrate, were shown to promote gut homeostasis and
immunity via control of histone acetylation and subsequently gene transcription®*25, The
acetylation state of a given genomic locus is controlled by two classes of antagonistic
histone modifying enzymes, histone acetyl transferases (HATs) and histone deacetylases
(HDACs), which add and remove target histone acetyl groups, respectively. Histone
acetylation is a hallmark of active promoter regions and transcription start sites (TSSs),
but also occurs at distal gene regulatory elements such as enhancers??’. Particularly
high levels of histone acetylation are located at super-enhancers, a class of powerful
enhancers that control the expression of key cell type-specific genes?®. Butyrate is a
known inhibitor of all class I/l HDACs?®3° and can significantly affect gene expression,
since histone acetylation is generally associated with accessible chromatin and active
gene transcription®'32. HDAC inhibition is thus expected to trigger histone
hyperacetylation and facilitate transcriptional activation. However, whether butyrate
affects histone acetylation status and the gene regulatory function of super-enhancers
remains largely unknown.

We recently reported that butyrate inhibits human mast cell activation and
degranulation, which was associated with reduced expression of genes critical for FceRI-
mediated signaling - likely via epigenetic mechanisms33. How butyrate exerts such
specific effects on gene expression in mast cells while targeting a very basal component



of transcriptional regulation remains incompletely understood. To address this question,
we integrated transcriptome and longitudinal profiing of histone acetylation
measurements to identify molecular mechanisms underlying selective gene expression
changes in primary human mast cells exposed to butyrate — ultimately resulting in potent
mast cell inhibition.



Results

Butyrate selectively regulates gene transcription in primary human mast cells

To characterize the impact of butyrate exposure on the mast cell transcriptome, we
measured gene expression profiles of two independent primary human mast cell cultures
upon 24 h of 5mM butyrate treatment using RNA-Sequencing (RNA-Seq). Across all
genes detected, 551 were upregulated by butyrate whereas 864 genes were
downregulated (FDR<0.05; Fig. 1A,B). Correlation of gene expression values between
the two biological replicates was high, both before and after butyrate treatment (R*>0.97,
Supplementary Fig. 1A,B). Pathway enrichment analyses indicated that downregulated
genes were mainly associated with leukocyte and mast cell activation (Fig. 1C,D, upper
panels). Indeed, expression of genes coding for proteins involved in FceRI- and
MRGPRX2-mediated mast cell activation was significantly downregulated (including BTK,
SYK, LAT and MRGPRX2, Supplementary Table 1), supporting our earlier findings that
butyrate inhibits mast cell activation induced via IgE and substance P (an MRGPRX2
ligand). Upregulated genes were enriched in more diverse biological pathways (Fig.
1C,D, lower panels), including genes involved in responses to metal ions (i.e., MT1 family
proteins), cellular responses to external stimuli and Ras/Rab GTPase signaling (Fig.
1C,D, lower panels, Supplementary Table 1).

The downregulated genes - in particular canonical mast cell genes - showed
substantially higher median basal expression values than unaffected or upregulated
genes (Fig. 1E). This is in line with a previous study in cancer cells demonstrating that
HDAC inhibitors are more likely to repress highly expressed genes?®. Conversely,
upregulated genes displayed slightly lower basal expression levels as compared to
unaffected genes (Fig. 1E). Nevertheless, high basal expression levels were not solely
predictive for responsiveness to butyrate treatment, as the 50 most highly expressed
genes did not respond to butyrate treatment (Fig. 1F).

Together, these results show that butyrate, in primary human mast cells,
selectively downregulates gene expression associated with leukocyte/mast cell activation
and upregulates a more diverse group of genes. Basal expression levels alone only
partially predict responsiveness to butyrate treatment, indicating a more selective
mechanism of action through which butyrate exerts it effects.
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Figure 1. Butyrate selectively downregulates gene expression associated with leukocyte/mast
cell activation. Gene expression profiles of primary human mast cells after 24 h of 5mM butyrate
treatment was measured using RNA-Sequencing (RNA-Seq; two biological replicates from
independent donors). (A) Scatter plot of downregulated (indicated in red), upregulated (indicated in
green) and unchanged genes (indicated in grey) in response to 24 h butyrate treatment. (B)
Proportions (top) and absolute numbers (bottom) of downregulated (red), upregulated (green) and
unchanged genes (gray). (C) Heatmap showing scaled expression levels of down- and upregulated
genes, selected example genes (with the highest fold change) are presented next to the heatmap. (D)
Pathway enrichment analysis of downregulated (top) and upregulated (below) genes. (E) Expression
changes in response to butyrate of canonical mast cell genes (red), downregulated genes (orange),
unchanged genes (yellow), upregulated genes (blue). (F) Expression changes in response to butyrate
of the top 50 highest expressed genes (green) and canonical mast cell genes (red). MC, mast cell;
RPKM, reads per kilobase per million



Butyrate triggers global histone hyperacetylation

To map the epigenomic landscape of two primary human mast cell cultures, D1 and D2,
after butyrate treatment, we performed ChIP-Seq specific for histone 3 lysine 27
acetylation (H3K27Ac) and histone 3 lysine 4 dimethylation (H3K4Me2) after O, 3, 12 and
24 h of butyrate treatment. H3K27Ac is a well-characterized acetylation mark that strongly
correlates with transcriptional activity; H3K4Me2 is also associated with active genes yet
is not an HDAC target®*. Genome-wide H3K27Ac coverage was markedly increased by
butyrate (up to ~2.6 fold), which was already apparent after 3 h and remained elevated
after 24 h of treatment (Fig. 2A, left panel). The relative increase in H3K27Ac+ regions
across the genome was essentially independent of enrichment calling parameter settings
(Supplementary Fig. 2A), and the location of these hyperacetylated regions was largely
consistent between different donors (Fig. 2A, ‘Shared’ peaks). Butyrate treatment did not
affect overall coverage of H3K4Me2 (Fig. 2A, right panel, Supplementary Fig. 2B), a
histone mark also associated with active chromatin yet not an HDAC target. In addition
to coverage per megabase (Mb) of DNA, butyrate treatment increased the number of
individually called H3K27Ac peaks in primary human mast cells ~2.6-fold (from 54,710 to
143,799) after 24 h, while H3K4Me2 peaks showed a much more modest increase (~1.3-
fold, from 80,219 to 105,037 at 24 h) (Fig. 2B). Furthermore, butyrate treatment shifted
the relative abundance of acetylation at genomic locations from TSS regions (from ~17%
down to ~10%) to intronic and intergenic regions (Supplementary Fig. 2B).

In conclusion, these data strengthen the notion that butyrate has a profound effect
on genome-wide H3K27Ac histone acetylation dynamics via HDAC inhibition. Notably,
these effects occurred without large-scale indirect effects on other histone modifications
such as H3K4Me2.
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Figure 2. Butyrate triggers global histone hyper-acetylation without large-scale indirect effects
on other histone modifications. Chromatin immunoprecipitation (ChlP)-Seq for histone 3 lysine 27
acetylation (H3K27Ac) and histone 3 lysine 4 di-methylation (H3K4Me2) was performed after 0, 3, 12
and 24 hours of butyrate treatment. (A) Megabase (Mb) coverage of histone acetylation (H3K27Ac,
left) and methylation (H3K4Me2, right). Donor 1 (D1) is indicated in blue and donor 2 (D2) is indicated
in red. Overlap between the donors is indicated by the shared peaks (yellow bars). (B) Total number
of called acetylation (left) and methylation (right) peaks following butyrate treatment in donor 1 and
donor 2, with shared peaks and increases in peak count (based on shared peak counts) indicated.
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Distinct patterns of histone acetylation dynamics induced by butyrate

To gain a more quantitative picture of H3K27Ac dynamics upon butyrate treatment, we
performed differential enrichment analyses with DESeq2 on reproducible peaks, which
showed that most regions acetylated at baseline (>68%) were not significantly (fold
change > 2 and adjusted P value < 0.05) affected by 3-24 h butyrate treatment
(Supplementary Fig. 3). After 3 h exposure, butyrate mostly triggered hyper-acetylation
(6.3% hyper-acetylated vs. 2.2% hypo-acetylated peaks), whereas 12 h butyrate
exposure showed similar proportions of hyper- and hypo-acetylation at baseline
H3K27Ac+ regions (13.3% vs. 12.8%). Finally, 24 h of treatment mostly induced hypo-
acetylation of existing peaks (13.1% vs. 18.6%, Supplementary Fig. 3).

To better annotate at which regulatory sites butyrate-induced histone acetylation
dynamics occur, we intersected regions of dynamic acetylation with TSS locations and
putative typical enhancer or super-enhancer regions as defined by the ROSE
algorithm?835, At untreated conditions (indicated as 0 h), histone acetylation was primarily
located distant from TSS regions, with the bulk of H3K27Ac+ sites located 50-500 kb
away from the TSS (Fig. 3A, bar graph). Furthermore, ~52% and ~19% of acetylated
peaks were associated with typical enhancers and super-enhancers, respectively,
whereas 17% of acetylated peaks were associated with TSS regions (Fig. 3A, donut
graph).

A 3 h exposure to butyrate led to 1226 significantly hypo-acetylated peaks, which
were predominantly located near TSSs (Fig. 3B, within +/- 5kb). In fact, ~48% of all hypo-
acetylated regions were located at a TSS (Fig. 3B, left donut graph). Although the total
number of hypo-acetylated peaks strongly increased with prolonged butyrate exposure
(8.8-fold increase), their location remained disproportionally enriched at TSS regions (Fig.
3B-D). Oppositely, butyrate treatment for 3 h led to 3547 significantly hyper-acetylated
peaks, which were predominantly located distal of TSS regions (Fig. 3B, >5kb upstream
or downstream). Overall, ~55% of all hyper-acetylated regions intersecting with a typical
enhancer, and ~21% intersecting with a super-enhancer (Fig. 3B, right donut graph).
Although the number of hyper-acetylated peaks increased with prolonged butyrate
exposure (2.1-fold increase), their location remained disproportionally enriched at
enhancer locations (Fig. 3B-D). Specifically, 12 and 24 h after butyrate treatment, ~86%
of all hyper-acetylated peaks were located either at a typical enhancer or super-enhancer
(Fig. 3C, D).

These data reveal that butyrate — despite its potent capacity for HDAC inhibition —
affects histone acetylation at a relatively small subset (i.e. ~30%) of pre-existing
H3K27Ac+ chromatin regions. Strikingly, butyrate-induced HDAC inhibition preferentially
reduces H3K27Ac levels at TSSs, while H3K27Ac enrichment primarily occurs at
locations distal from TSS regions, co-localizing with typical enhancers and super-
enhancers.
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Figure 3. Butyrate induces distinct patterns of histone acetylation dynamics. (A) Distance of
acetylated peaks in untreated human mast cells (Oh) to associated transcription start site (TSS)
regions, both upstream (left side) and downstream (right side). Distances of peak to TSS from 0 to 5
kb are indicated in purple, 5 — 50 kb in green and distances greater than 50 kb are indicated in yellow.
Donut plots indicate the genomic locations of differentially acetylated regions, which were defined as
typical enhancers (TE), super-enhancers (SE, identified using ROSE), TSS regions (TSS) or other.
(B-D) Same analysis as in A but for mast cells treated with butyrate for 3 (B), 12 (C) and 24 (D) hours.
Differential enrichment was calculated using DESeq2 on reproducible peaks (fold change > 2 and
adjusted P value < 0.05).
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Differential impact of butyrate on acetylation dynamics at transcriptionally
activated or repressed loci

We next assessed how the observed changes in histone acetylation upon butyrate
treatment translate into altered gene expression. We observed hypo-acetylated TSS
peaks near several downregulated genes, including the mast cell activation-associated
genes BTK (3.97 fold decrease expression), SYK (3.89 fold), MRGPRX2 (4.86 fold) and
KIT (2.45 fold) (Fig. 4A). Overall acetylation at the TSS of the 864 (Fig. 1B)
downregulated genes was strongly and immediately reduced upon butyrate exposure
(Fig. 4B, left histogram). Although TSS acetylation was also reduced at transcriptionally
unchanged genes (defined as the 600 genes with the lowest fold chance in expression
after butyrate treatment) and the 551 upregulated genes (Fig. 4B, middle and right
histogram), the quantitative reduction in area under the curve was strongest and fastest
for the 864 downregulated genes (Fig. 4C).

We also tested whether increased histone acetylation upon butyrate treatment was
linked to elevated gene expression levels. Several strongly upregulated genes (Log2 fold
change > 4) displayed hyper-acetylation at their TSS regions (representative examples
are F2RL1 and CLGN, which show 1500 and 675 fold increased expression respectively;
Fig. 4D). Indeed, acetylation at the TSS of the 50 most upregulated genes was increased
at all measured timepoints (Fig. 4E, left histogram). Acetylation at the TSS of a broader
set of the 100 most upregulated genes was also increased at 3 h after butyrate exposure,
although H3K27Ac levels returned to near basal levels after 12 and 24 h (Fig. 4E, middle
histogram). However, the 451 remaining upregulated genes, which showed weaker
induction and higher baseline TSS acetylation, showed reduced TSS H3K27Ac signals in
response to prolonged (>3 h) butyrate treatment (Fig. 4E, right histogram). Area under
the curve quantification validated that acetylation at the TSS of strongly upregulated
genes rapidly increased, whereas acetylation at the TSS of moderately or weakly
upregulated genes actually decreased (Fig. 4F). Notably, the most strongly upregulated
genes (i.e. top 50/100) displayed lower baseline acetylation (Fig. 4E) and RNA
expression (Supplementary Fig. 4), whereas less strongly upregulated genes had
established TSS acetylation and higher expression prior to butyrate treatment
(Supplementary Fig. 4). These results suggests that transient hyper-acetylation at the
TSS of genes may be sufficient to induce gene activation at poorly expressed or silent
genes, whereas the butyrate-mediated induction of already robustly expressed genes is
regulated by TSS acetylation-independent mechanisms.

As the majority of hyper-acetylated peaks were located at typical enhancers (Fig.
3B-D), we next quantified changes in acetylation enrichment in the enhancer landscape
(EL, defined as all non-TSS H3K27Ac peaks). Histone acetylation at the EL linked to the
864 downregulated and unchanged genes displayed an initial modest increase, but
decreased again after 24 h (Fig. 4G, left and middle histogram). Acetylation at the EL
around the 551 upregulated genes was increased at all measured timepoints (Fig. 4G,

13



right histogram), which was supported by quantification of the area under the curve (Fig.
4H).

Taken together, these findings demonstrate that butyrate exposure induces
complex histone acetylation dynamics. Generally, H3K27Ac was rapidly depleted around
the TSS of genes, which was most pronounced for downregulated genes. Only very
strongly induced genes expressed at very low baseline levels did show a sustained gain
in promoter H3K27Ac levels. The overall effects on the enhancer landscape appear to be
more modest, although hyper-acetylation of enhancers may, in part, be linked to the
upregulated expression of associated genes.

14
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Figure 4. Butyrate exposure induces complex histone acetylation dynamics that only partially
correlate with transcriptional outcomes. RNA-Seq and ChlP-Seq datasets, obtained from butyrate-
treated primary human mast cells, were integrated to investigate the relationship between butyrate-
mediated controls of histone acetylation and gene expression. (A) Representative examples of hypo-
acetylated (indicated by a blue rectangle) canonical mast cell genes (i.e. BTK, SYK, MRGPRX2 and
KIT). Yellow shading highlight significant differences between histone acetylation in untreated human
mast cells (indicated in blue, 0 h) and butyrate treated human mast cells (indicated in red, 24 h). (B)
Histograms of H3K27Ac at the TSS of downregulated genes (left box), unchanged genes (middle box)
and upregulated genes (right box). The 0 h timepoint is indicated in light grey and TSS acetylation
after butyrate treatment indicated in shades of red. (C) Quantification of the reduction of TSS
acetylation area under the curve at 3, 12 and 24 h after butyrate treatment (with downregulated genes
indicated in blue, unchanged genes in yellow and upregulated genes in orange). (D) Examples of
hyper-acetylated genes (i.e. F2RL1 and CLGN). (E) Histograms of H3K27Ac at the TSS of the top 50
upregulated genes (left box), top 100 upregulated genes (middle box) and lower 451 upregulated
genes (right box). (F) Area under the curve quantification of data shown in E. (G) Histograms of
H3K27Ac at the enhancer landscape (EL) of downregulated genes (left box), unchanged genes
(middle box) and upregulated genes (right box). (H) Area under the curve quantification of data shown
in G.
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Butyrate preferentially suppresses super-enhancers and their associated genes
Because super-enhancers can be extensively acetylated and have been reported as
preferential targets of HDAC inhibitors36:37, we next investigated H3K27Ac dynamics at
super-enhancers and transcriptional changes of their target genes. From two biological
replicates, 608 reproducible super-enhancers were identified that were linked to 588
unique associated genes in untreated primary human mast cells (Fig. 5A). These genes
were strongly enriched for immune effector cell processes, such as cell activation,
exocytosis and secretion (Fig. 5B). These included super-enhancers associated with
CD9, LAIR1, COTL1 and LAT, which are known regulators of mast cell mediator secretion
(Fig. 5C), as well as other mast cell-associated genes such as KIT, MS4A2 and LYN
(Supplementary Table 2).

Most super-enhancers (~84%) overlapped with non-TSS regions that were
hypoacetylated (fold change > 2 and adjusted P value < 0.05) after 24 hours of butyrate
treatment (Fig. 5C,D). Pathway enrichment analyses of the 502 genes associated with
hypo-acetylated super-enhancer revealed that they are particularly associated with
regulation of cell activation, FCERI mediated Ca+2 mobilization and mast cell mediated
immunity (Fig. 5E). Of note, ~19% of hypo-acetylated super-enhancers were linked to
transcriptionally downregulated genes (Fig. 5F), as compared to only 6-8% for hypo-
acetylated typical enhancers and TSS regions. For genes expressed prior to butyrate
treatment (RPKM>1), hypo-acetylation of super-enhancers represented the strongest
predictor of transcriptional downregulation (24%), followed by hypo-acetylation of typical
enhancers (13.0%) and TSS regions (7.7%) (Supplementary Fig. 5A).

Genes that displayed downregulated expression and super-enhancer hypo-
acetylation (n=95, 18.9% of 502 genes) were strongly associated with (mast cell)
activation and exocytosis (Fig. 5G). By contrast, downregulated genes linked to hypo-
acetylated typical enhancer regions associated with more general immune functions
(Supplementary Fig. 5B). Together, these findings provide a plausible epigenetic
explanation for the transcriptional deregulation of many downregulated genes, i.e., via
loss of histone acetylation of their TSSs, super-enhancers, or both (Fig. 5H). Of note, out
of the 864 downregulated genes, 112 genes were associated with super-enhancers, a
majority (85%) of which displayed hypo-acetylation after 24 hours of butyrate.

A considerable share of hyper-acetylated peaks was located in super-enhancer
regions (~21-25%) (Fig. 3B-D), and ~20% of super-enhancers contained a hyper-
acetylated region after 24 hours of butyrate treatment (Supplementary Fig. 5C). Yet,
only ~0.4% of hyper-acetylated super-enhancers were linked to transcriptionally
upregulated genes, similar to hyper-acetylated typical enhancers and TSS regions
(Supplementary Fig. 5D). Instead, weak hyper-acetylation (i.e. not passing our
thresholds for differential enrichment) at typical enhancers may better explain why
expression is induced at such genes (Supplementary Fig. 5E, F).
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In summary, these data indicate that super-enhancers are an important target of
butyrate-induced HDAC inhibition, most often resulting in a loss of H3K27Ac and
correlating with reduced expression of many associated key mast cell genes.
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Figure 5. Butyrate perturbs super-enhancers and preferentially suppresses SE-associated
transcripts. (A) Super-enhancers (SE) were ranged by H3K27Ac signal in untreated human mast
cells of donor 1 (left hockey stick graph) and donor 2 (right hockey stick graph). (B) Pathway
enrichment analysis of 588 consistent (present in both donor 1 and 2) SE genes in untreated human
mast cells. (C) Representative examples of SE (indicated by yellow rectangles) in untreated human
mast cells (0 h, indicated in blue), that become hypo-acetylated (indicated by green bars) in response
to butyrate treatment (24 h, indicated in red). Overlap between identified SE and hypo-acetylated
regions is indicated by red bars (intersect). (D) Proportion of SE that contain hypo-acetylated regions
(in blue) and SE regions that do not intersect with a hypo-acetylated region (in light red). (E) Pathway
enrichment analysis of 502 hypo-acetylated SE genes. (F) The percentage of hypo-acetylated SE,
typical enhancer (TE) or TSS regions linked to a downregulated gene. (G) Pathway enrichment
analysis of 95 downregulated genes associated with hypo-acetylated SE regions. (H) Epigenetic
explanation for butyrate-induced downregulation of gene expression. The proportion of downregulated
genes with significant hypo-acetylated TSS (purple), TSS and SE (green), SE (yellow) and non-
significant reduced acetylation (pink). Differential enrichment was calculated using DESeq2 (fold
change > 2 and adjusted P value < 0.05).
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Human mast cell activation is regulated by super-enhancer activity and the
associated cell-type specific transcriptional networks.

Next, we set out to assess whether specific perturbation of super-enhancer activity can
indeed affect human mast cell activation. To this end we treated primary human mast
cells with JQ-1, a bromodomain containing 4 (BRD4) inhibitor®®, and induced
degranulation by IgE/antigen stimulation. BRD4 is highly enriched at super-enhancer
regions and actively regulates the expression of associated genes®. JQ-1 potently
inhibited primary human mast cell degranulation, in a concentration-dependent manner
(Fig. 6A). JQ-1 did not induce cell death at the tested concentrations (data not shown).
To assess whether the effects of JQ-1 were (non-)additive to the effects of butyrate on
human mast cell activation, suboptimal concentrations of JQ-1 (50ng/mL) and butyrate
(1mM), as well as a combination of the two inhibitors, were incubated with the cells for 24
h followed by IgE crosslinking. Inhibition of mast cell degranulation by butyrate was not
further increased by (low-dose) JQ-1 addition, suggesting that both inhibitors target the
same modulators of human mast cell activation (Fig. 6B). Indeed, JQ-1 repressed
expression of various super-enhancer associated genes that were also repressed by
butyrate (Fig. 6C, Supplementary Fig. 6A). LAIR, LCP2, LAT and LAT2 are essential
modulators of human mast cell activation*®#3, which may explain why mast cells display
an inhibited degranulation profile after both butyrate and JQ-1 exposure.

A simple explanation for preferential deacetylation at TSS and super-enhancer
regions after butyrate treatment may be a non-selective redistribution of histone
acetylation that affects such regions more profoundly due to their extensively acetylated
nature. However, a substantial number of established highly enriched H3K27Ac peaks
either increased in acetylation levels or — even more frequently — were unaffected by
butyrate treatment (representative examples in Supplementary Fig. 6B). For example,
only ~31% of the 500 most extensively acetylated sites in the mast cell genome were
hypo-acetylated by butyrate after 3 h (Supplementary Fig. 6C). Nevertheless, most
hypo-acetylated peaks (~74%; 890 out of 1203) after 3 h treatment originated from the
5000 strongest H3K27Ac peaks (Supplementary Fig. 6D). Thus, butyrate-induced hypo-
acetylation selectively targets a subset of extensively acetylated peaks.

Taken together, these data indicate that human mast cell activation is strongly
regulated by super-enhancer activity and the associated cell-type specific transcriptional
networks. Furthermore, butyrate likely exerts (part of) its inhibitory effects on human mast
cell activation via the specific perturbation of super-enhancer activity.
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Figure 6. BET-bromodomain inhibitor JQ-1 inhibits human mast cell activation to a similar
extent as butyrate. (A) Primary human mast cells were treated with increasing concentrations of JQ-
1 for 24 h, primed with IgE and cross-linked with anti-IgE. Percentage of mast cell degranulation (as
measured by beta-hexosaminidase release) after IgE-mediated activation using anti-IgE stimulation
in primary human mast cells treated with increasing concentrations of JQ-1. (B) Percentage of
degranulation after IgE-mediated human mast cell activation in untreated, JQ-1 treated (50ng/mL, 24
h), butyrate treated (1mM, 24 h) or combination treated (JQ-1+butyrate, 24 h) cells. (C) Gene
expression (2*delta CT) of LAIR, LCP2, LAT and LAT2 in human mast cells derived from two different
donors treated with increasing concentration of JQ-1 for 24 h. Data represent mean + SD (panel A),
statistical significance was tested using a one-way ANOVA test: *Significantly decreased compared
with control (P < .05). ***P < .001. NS, not significant.
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Discussion

Although we and others have demonstrated that butyrate and other HDAC inhibitors can
regulate the activity of mast cells and other immune cells, it remains incompletely
understood how such broadly-acting molecules can exert rather precise and cell-type
specific transcriptional changes. By integrating RNA-Seq and ChlP-Seq datasets
obtained from butyrate-treated primary human mast cells, we uncovered that butyrate
controls mast cell function through complex yet highly specific changes in histone
acetylation — including a loss of acetylation at super-enhancers that control key mast cell
degranulation genes. Pharmacological inhibition of super-enhancers indeed suppressed
mast cell degranulation, similar to what was observed for butyrate.

We found that gene repression following butyrate treatment is primarily associated
with H3K27Ac depletion around the TSS of highly expressed genes. Although seemingly
counterintuitive, many studies have reported gene repression triggered by HDAC
inhibitors**. Highly expressed genes were previously shown to be prime targets of HDAC
inhibitors in (cancer) cell lines**46, including KIT in transformed human mast cells*’, in
line with our own findings. This may be explained by preferential binding of HDACs to
highly expressed genes, where they are considered to be critical for maintaining the
precise acetylation-deacetylation balance required for productive gene transcription*6-48.
As histone acetylation attracts many proteins involved in transcriptional control, a global
redistribution of histone acetylation, as caused by butyrate, is likely to redirect these
chromatin readers away from their target regulatory regions*. While our findings agree
with these notions, we also show that many highly-expressed and strongly acetylated
genes are completely impervious to HDAC inhibition by butyrate, indicating that additional
mechanisms determine the remarkable selectivity by which butyrate affects the
epigenome and transcriptome of mast cells.

In agreement with findings by Rada-Iglesias et al.*®, our analysis of H3K27Ac
dynamics in mast cells revealed that butyrate-induced hyper-acetylation is mostly an early
and transient event, since hypo-acetylation became the dominant effect at 24 hours. This
suggests that histone deacetylation might be a secondary effect of HDAC inhibition, as
HATs gain a competitive advantage for acetyl groups and are able to deposit these at
new locations. In primary human mast cells, loss of H3K27Ac at gene regulatory regions
upon butyrate treatment was not caused by notable reductions in HAT expression (data
not shown). Important to note here is that a previous study of the HDAC inhibitor largazole
revealed that exposure to low concentrations solely induced gene activation, whereas
higher concentrations shifted the balance towards gene repression®. Whether a similar
dose-dependent response exists for butyrate will need to be addressed in subsequent
studies.

To our best knowledge, we are the first to define super-enhancers in primary
human mast cells, and describe their potential relevance for mast cell biology. Super-
enhancer-associated genes in human mast cells were strongly linked to immune effector
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cell processes, such as cell activation, exocytosis and secretion. Likely due to their high
HDAC and HAT occupancy, ~84% of super-enhancers contained hypo-acetylated
regions after butyrate treatment, which correlated with reduced transcriptional output of
many nearby genes. Among these affected super-enhancer-associated genes are many
core regulators of mast cell identity and function, including the KIT receptor, FceRI
signaling components and degranulation-associated factors. Interestingly, perturbation of
super-enhancer activity by JQ-1 inhibited degranulation of primary human mast cells,
most likely via downregulation of various key mast cell identity genes that are also
targeted for repression by butyrate. Indeed, specific repression of core cell identity gene
expression by HDAC inhibitors has been previously reported®®%'. Thus, it appears
plausible that at least part of the inhibitory effect of butyrate is a direct consequence of
super-enhancer destabilization. How mast cell activation subsequently reorganizes the
chromatin landscape, a phenomenon recently described by Cildir et al®?, and which
specific (combination of) repressed genes form the foundation of butyrate’s inhibitory
effects, are important topics for future studies.

In summary, our data indicate that butyrate inhibits mast cell activation via a
surprisingly selective suppression of the core mast cell transcriptional program, in part by
targeting super-enhancers. Acquiring a deeper understanding of the mechanisms of
action of butyrate, and other HDAC inhibitors, may in the future offer improved ways to
combat mast cell-mediated diseases such as allergies and asthma.
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Methods

Peripheral blood mononuclear cell-derived human mast cells

Human peripheral blood mononuclear cell-derived mast cells were generated as
previously described by Folkerts et al.® Briefly, peripheral blood mononuclear cells were
obtained from buffy coats of healthy blood donors and CD34" precursor cells were
isolated using the EasySep Human CD34 Positive Selection Kit (STEMCELL
Technologies). CD34" cells were maintained for 4 weeks under serum-free conditions
using StemSpan medium (STEMCELL Technologies) supplemented with recombinant
human IL-6 (50 ng/mL; Peprotech), human IL-3 (10 ng/mL; Peprotech), and human Stem
Cell Factor (100 ng/mL Peprotech). Thereafter, the cells were maintained in IMDM
Glutamax | containing sodium pyruvate, supplemented with 0.1% 2-mercaptoethanol,
0.5% BSA, 1% insulin- 175 transferrin selenium (all from Invitrogen), ciprofloxacin
(10 pg/mL; Sigma-Aldrich), IL-6 (50 ng/mL; Peprotech), and human Stem Cell Factor
(100 ng/mL; Peprotech). After 8-12 weeks, PBCMCs were tested for maturity by Giemsa
or toluidine blue staining and beta-hexosaminidase release assays.

RNA-Seq gene expression analysis and pathway enrichment analyses

To prepare RNA samples for RNA-seq, total RNA was isolated from human PBCMCs
treated with 5 mM butyrate (or vehicle) for 24 h, using the RNeasy Micro Kit (74004,
Qiagen). High-throughput sequencing was performed on the lllumina HiSeq 4000
sequencer. Reads were generated of 50 base-pairs in length and alignment was
performed using HISAT (Hierarchical Indexing for Spliced Alignment of Transcripts). Tag
directories were generated for each sample with removal of duplicate reads (-tbp 1
option). Quantification and normalization of the RNA-Seq data was performed using the
open-source software HOMERS33. Differential expression was calculated using DESeq?2
within the environment of HOMER. Significant differentially expressed genes were
defined as differential genes with an adjusted P value < 0.05 (Wald test). To filter out
significant differences among lowly expressed genes, an average RPKM value higher
than 1 in at least one condition was required. The remaining genes all had a Log2 fold
change higher than (-)0.8, we tolerated this cut-off for further downstream analyses.
Pathway enrichment analysis was done using Metascape®.

ChIP-Seq and data analysis

Chromatin Immuno Precipitation (ChIP) was performed as previously described®®, with
minor modifications. Per ChlP, 100K crosslinked mature primary human mast cells were
used. Sonicated chromatin was immunoprecipitated using 1 ug of anti-H3K27Ac antibody
(Abcam, Ab4729), 1 ug of anti-H3K4Me2 antibody (Abcam, Ab32356) and 25 ul BSA-
blocked Protein A agarose beads (Millipore #16-125). lllumina sequencing libraries were
prepared using the ThruPLEX DNA-Seq Kit (Rubicon Genomics) and sequenced on an
lllumina HiSeq2500 sequencer (single read 50 bp length, 17-21 million reads per sample).
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Reads were aligned to the human GRCh38 genome build using HISAT2% with standard
parameters and parsed to HOMER®? for downstream analyses. Tag directories were
generated for each sample with removal of duplicate reads (-tbp 1 option). BedGraph files
displaying normalized counts (reads per million) were generated for direct visualization in
the UCSC Genome Browser using the makeUCSCfile HOMER script. H3K27Ac enriched
regions were identified using HOMER findPeaks with -region -size 150 -minDist 370
(parameter set 1) or -region -size 1000 -minDist 2500 (parameter set 2) options.
Histograms of ChlIP signals were generated with the annotatePeaks script (using the -hist
option). ChlP-Seq datasets were deposited in the Gene Expression Omnibus (GEO),
accession number pending. Differential peaks were calculated using DESeq2 using
default settings (fold change > 2 and adjusted P value < 0.05). Intersect peak files of two
different peak files were analyzed via the Genomic Regions Enrichment of Annotations
Tool (GREAT), to obtain the distance to associated TSS data. Genomic locations of
(differentially) acetylated regions were annotated using the ROSE algorithm and HOMER.

Analysis of super-enhancers and typical enhancers

H3K27ac ChIP-seq data were used for identifying typical and super- enhancers using
ROSE software?®35, The H3K27ac ChlP-seq peaks in untreated and treated mast cells
were stitched within 12.5 kb of each other and excluding 2.5 kb upstream and downstream
of the known transcription start sites (TSS). The combined H3K27ac reads within stitched
regions were plotted in a ranked enhancer order. Super-enhancers were defined as the
enhancers above the inflection point and the rest were defined as typical enhancers.
Annotation of enhancers was performed using the annotatePeaks.pl function (default
settings) in HOMER. Pathway enrichment analysis of super-enhancers was performed
using Metascape®*. Differential peaks within super-enhancer regions that overlapped with
a TSS region were excluded from downstream analyses.

Mast cell activation assay & Quantitative real-time PCR

Mast cells were cultured (if applicable) with JQ-1 (HY-13030, MedChemExpress) or
sodium butyrate (303410, Sigma-Aldrich) 24 h prior to activation. PBCMCs from two
different donors were sensitized with human Ig (2 ug/ml, for 1 hour) and washed,
followed by stimulation with 2 ng/ml of anti-lgE. Human IgE myeloma was purchased from
Milipore-Sigma (401152) and rabbit anti-human IgE from Bethyl Laboratories (A80-109A).
Degranulation was measured by the release of beta-hexosaminidase®’. Substrate 4-MUG
(M2133, Sigma-Aldrich) was added to this enzyme containing supernatant and the
product was measured after 1 h by means of fluorescence (Glomax Discover, Promega).
After RNA isolation as stated above, cDNA was made using RevertAid H Minus First
Strand cDNA Synthesis Kit (#K1632, Thermo Fisher Scientific) according to
manufacturer. qPCR is performed using PowerUp™ SYBR™ Green Master Mix
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(#A25741, Thermo Fisher Scientific) and primers were found by OriGene (Table 1). Run
on QuantStudio™ 3 Real-Time PCR System (A28567, Thermo Fisher Scientific).

Table 1 - Quantitative real-time PCR primers

gene Gene ID
name forward reverse OriGene

Lair1 TGGTCTGAGCAGAGTGACTACC |GCTCATTGTGACTGTTGTCCGAC 3903
LCP2 GGAAGAAGCCACCTGTGCCAAA | GCTCATAGGAAGTAGTGCTGGC 3937
Lat ATCCTGGAGCGGCTAAGACTGA |GTTCAGCTCCTGCAGATTCTCG 27040
Lat2 GCAAGCAGAAAACCACAGAGACA | AGAGGGACAGAGACCAGAAGTG 7462
HPRT |ATTGTAATGACCAGTCAACAGGG |GCATTGTTTTGCCAGTGTCAA home made

Statistical analysis

Statistical tests were performed with Graphpad Prism 9 (GraphPad Software, Inc). One-
way ANOVA tests were performed as described in the respective figure legends. A P-
value of less than 0.05 was considered statistically significant.
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Supplementary Figure 1. Correlation of gene expression values between both primary human
mast cell cultures. (A, B), Comparison of gene expression (Log10) profiles between donor 1 and
donor 2, in untreated (left scatter plot) and butyrate treated human mast cells (right scatter plot).
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Supplementary Figure 2. Butyrate treatment shifts the relative abundance of acetylation at
genomic locations from TSS regions to intronic regions, without affecting histone methylation.
Chromatin immunoprecipitation (ChIP)-Seq specific for histone 3 lysine 27 acetylation (H3K27Ac) and
histone 3 lysine 4 di-methylation (H3K4Me2) was performed after 0, 3, 12 and 24 h of butyrate
treatment. (A) Megabase (Mb) coverage of histone acetylation (H3K27Ac, left) and methylation
(H3K4Me2, right), using peak-calling parameter settings -size 1000 -minDist 2500. Donor 1 (D1) is
indicated in blue and donor 2 (D2) is indicated in red. Overlap between the donors is indicated by the
shared bars (yellow). (B) Genomic annotation of H3K27Ac peaks in untreated human mast cells (upper
donut graph) and redistribution of acetylation peaks induced by 3, 12 and 24 hours of butyrate
treatment (lower donut graphs).
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Supplementary Figure 3. Most H3K27Ac+ regions at baseline are not significantly affected by
butyrate treatment. Differential enrichment analysis (fold change > 2 and adjusted P value < 0.05)
was performed using DESeq2 to gain a quantitative picture of H3K27Ac dynamics upon butyrate
treatment. Distribution of hyper-acetylated (in green), hypo-acetylated (in red) and unchanged (in

purple) baseline (0 h) H3K27Ac+ peaks in response to 3, 12 and 24 hours of butyrate treatment.
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Supplementary Figure 5. H3K27Ac acetylation at super-enhancers and associated
transcriptional dynamics. (A) The percentage of expressed hypo-acetylated genes that are
downregulated upon butyrate treatment and associated with SE, TE or TSS. (B) Pathway enrichment
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contain hyper-acetylated regions (in blue) and SE regions that do not intersect with a hyper-acetylated
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upregulated gene. (E) Histograms of histone-acetylation at the TSS of upregulated genes with
significant (left box) and non-significant (right box) hyper-acetylation at their TEs. The 0 h timepoint is
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indicated in light grey and TSS acetylation after butyrate treatment indicated in red. (F) Epigenetic
explanation for butyrate-induced upregulation of gene expression. The proportion of upregulated
genes with significant hyper-acetylated TSS (purple), TSS and SE (green), SE (orange), TE (yellow)
and non-significant reduced acetylation (pink).
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Supplementary Figure 6. Extensively acetylated peaks are preferable targets of butyrate-
induced hypo-acetylation, but in a selective manner. (A) Gene expression (RPKM) of LAIR, LCP2,
LAT and LAT2 in human mast cells derived from two different donors treated with 5mM Butyrate for
24 h. (B) Genomic browser view of representative examples of unaffected or (transient) hyper-
acetylation at established acetylation peaks. (C) Venn diagram comparing the 1203 hypo-acetylated
peaks after 3 hours of butyrate treatment with the top 500 most acetylated peaks in the mast cell
epigenome. (D) Venn diagram comparing the 1203 hypo-acetylated peaks after 3 hours of butyrate
treatment with the top 5000 most acetylated peaks in the mast cell genome.
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