References
Alves, M., Gil, B., Villegas-Salmeron, J., Salari, V., Martins-Ferreira, R., Arribas Blazquez, M., . . . Engel, T. (2024). Opposing effects of the purinergic P2X7 receptor on seizures in neurons and microglia in male mice. Brain Behav Immun . doi:10.1016/j.bbi.2024.05.023Amhaoul, H., Ali, I., Mola, M., Van Eetveldt, A., Szewczyk, K., Missault, S., . . . Dedeurwaerdere, S. (2016). P2X7 receptor antagonism reduces the severity of spontaneous seizures in a chronic model of temporal lobe epilepsy.Neuropharmacology, 105 , 175-185. doi:10.1016/j.neuropharm.2016.01.018Amorim, R. P., Araujo, M. G. L., Valero, J., Lopes-Cendes, I., Pascoal, V. D. B., Malva, J. O., & da Silva Fernandes, M. J. (2017). Silencing of P2X7R by RNA interference in the hippocampus can attenuate morphological and behavioral impact of pilocarpine-induced epilepsy. Purinergic Signal, 13 (4), 467-478. doi:10.1007/s11302-017-9573-4Andrejew, R., Oliveira-Giacomelli, A., Ribeiro, D. E., Glaser, T., Arnaud-Sampaio, V. F., Lameu, C., & Ulrich, H. (2020). The P2X7 Receptor: Central Hub of Brain Diseases. Front Mol Neurosci, 13 , 124. doi:10.3389/fnmol.2020.00124Aronica, E., Bauer, S., Bozzi, Y., Caleo, M., Dingledine, R., Gorter, J. A., . . . Kaminski, R. M. (2017). Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia, 58 Suppl 3 (Suppl 3), 27-38. doi:10.1111/epi.13783Autar, K., Guo, X., Rumsey, J. W., Long, C. J., Akanda, N., Jackson, M., . . . Hickman, J. J. (2022). A functional hiPSC-cortical neuron differentiation and maturation model and its application to neurological disorders. Stem Cell Reports, 17 (1), 96-109. doi:10.1016/j.stemcr.2021.11.009Barros-Barbosa, A. R., Oliveira, A., Lobo, M. G., Cordeiro, J. M., & Correia-de-Sa, P. (2018). Under stressful conditions activation of the ionotropic P2X7 receptor differentially regulates GABA and glutamate release from nerve terminals of the rat cerebral cortex. Neurochem Int, 112 , 81-95. doi:10.1016/j.neuint.2017.11.005Beamer, E., Fischer, W., & Engel, T. (2017). The ATP-Gated P2X7 Receptor As a Target for the Treatment of Drug-Resistant Epilepsy. Front Neurosci, 11 , 21. doi:10.3389/fnins.2017.00021Beamer, E., Kuchukulla, M., Boison, D., & Engel, T. (2021). ATP and adenosine-Two players in the control of seizures and epilepsy development. Prog Neurobiol, 204 , 102105. doi:10.1016/j.pneurobio.2021.102105Beamer, E., Morgan, J., Alves, M., Menendez Mendez, A., Morris, G., Zimmer, B., . . . Engel, T. (2022). Increased expression of the ATP-gated P2X7 receptor reduces responsiveness to anti-convulsants during status epilepticus in mice.Br J Pharmacol, 179 (12), 2986-3006. doi:10.1111/bph.15785Cuellar-Santoyo, A. O., Ruiz-Rodriguez, V. M., Mares-Barbosa, T. B., Patron-Soberano, A., Howe, A. G., Portales-Perez, D. P., . . . Estrada-Sanchez, A. M. (2022). Revealing the contribution of astrocytes to glutamatergic neuronal transmission. Front Cell Neurosci, 16 , 1037641. doi:10.3389/fncel.2022.1037641Devinsky, O., Vezzani, A., Najjar, S., De Lanerolle, N. C., & Rogawski, M. A. (2013). Glia and epilepsy: excitability and inflammation. Trends Neurosci, 36 (3), 174-184. doi:10.1016/j.tins.2012.11.008Dogan, E., Aygun, H., Arslan, G., Rzayev, E., Avci, B., Ayyildiz, M., & Agar, E. (2020). The Role of NMDA Receptors in the Effect of Purinergic P2X7 Receptor on Spontaneous Seizure Activity in WAG/Rij Rats With Genetic Absence Epilepsy. Front Neurosci, 14 , 414. doi:10.3389/fnins.2020.00414Dona, F., Ulrich, H., Persike, D. S., Conceicao, I. M., Blini, J. P., Cavalheiro, E. A., & Fernandes, M. J. (2009). Alteration of purinergic P2X4 and P2X7 receptor expression in rats with temporal-lobe epilepsy induced by pilocarpine. Epilepsy Res, 83 (2-3), 157-167. doi:10.1016/j.eplepsyres.2008.10.008Donnelly-Roberts, D. L., Namovic, M. T., Han, P., & Jarvis, M. F. (2009). Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. Br J Pharmacol, 157 (7), 1203-1214. doi:10.1111/j.1476-5381.2009.00233.xEngel, T. (2023). The P2X7 Receptor as a Mechanistic Biomarker for Epilepsy. Int J Mol Sci, 24 (6). doi:10.3390/ijms24065410Engel, T., Gomez-Villafuertes, R., Tanaka, K., Mesuret, G., Sanz-Rodriguez, A., Garcia-Huerta, P., . . . Diaz-Hernandez, M. (2012). Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J, 26 (4), 1616-1628. doi:10.1096/fj.11-196089Engel, T., Smith, J., & Alves, M. (2021). Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. J Inflamm Res, 14 , 3367-3392. doi:10.2147/JIR.S287740Fischer, W., Franke, H., Krugel, U., Muller, H., Dinkel, K., Lord, B., . . . Engel, T. (2016). Critical Evaluation of P2X7 Receptor Antagonists in Selected Seizure Models. PLoS One, 11 (6), e0156468. doi:10.1371/journal.pone.0156468Francistiova, L., Voros, K., Lovasz, Z., Dinnyes, A., & Kobolak, J. (2021). Detection and Functional Evaluation of the P2X7 Receptor in hiPSC Derived Neurons and Microglia-Like Cells. Front Mol Neurosci, 14 , 793769. doi:10.3389/fnmol.2021.793769Halassa, M. M., & Haydon, P. G. (2010). Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol, 72 , 335-355. doi:10.1146/annurev-physiol-021909-135843Hedegaard, A., Monzon-Sandoval, J., Newey, S. E., Whiteley, E. S., Webber, C., & Akerman, C. J. (2020). Pro-maturational Effects of Human iPSC-Derived Cortical Astrocytes upon iPSC-Derived Cortical Neurons. Stem Cell Reports, 15 (1), 38-51. doi:10.1016/j.stemcr.2020.05.003Hirose, S., Tanaka, Y., Shibata, M., Kimura, Y., Ishikawa, M., Higurashi, N., . . . Ishii, A. (2020). Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci, 108 , 103535. doi:10.1016/j.mcn.2020.103535Hyvarinen, T., Hagman, S., Ristola, M., Sukki, L., Veijula, K., Kreutzer, J., . . . Narkilahti, S. (2019). Co-stimulation with IL-1beta and TNF-alpha induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system. Sci Rep, 9 (1), 16944. doi:10.1038/s41598-019-53414-9Illes, P., Khan, T. M., & Rubini, P. (2017). Neuronal P2X7 Receptors Revisited: Do They Really Exist? J Neurosci, 37 (30), 7049-7062. doi:10.1523/JNEUROSCI.3103-16.2017Jimenez-Mateos, E. M., Arribas-Blazquez, M., Sanz-Rodriguez, A., Concannon, C., Olivos-Ore, L. A., Reschke, C. R., . . . Engel, T. (2015). microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep, 5 , 17486. doi:10.1038/srep17486Jimenez-Pacheco, A., Diaz-Hernandez, M., Arribas-Blazquez, M., Sanz-Rodriguez, A., Olivos-Ore, L. A., Artalejo, A. R., . . . Henshall, D. C. (2016). Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. J Neurosci, 36 (22), 5920-5932. doi:10.1523/JNEUROSCI.4009-15.2016Jimenez-Pacheco, A., Mesuret, G., Sanz-Rodriguez, A., Tanaka, K., Mooney, C., Conroy, R., . . . Engel, T. (2013). Increased neocortical expression of the P2X7 receptor after status epilepticus and anticonvulsant effect of P2X7 receptor antagonist A-438079. Epilepsia, 54 (9), 1551-1561. doi:10.1111/epi.12257Johnson, M. A., Weick, J. P., Pearce, R. A., & Zhang, S. C. (2007). Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture.J Neurosci, 27 (12), 3069-3077. doi:10.1523/JNEUROSCI.4562-06.2007Jones, R. S., da Silva, A. B., Whittaker, R. G., Woodhall, G. L., & Cunningham, M. O. (2016). Human brain slices for epilepsy research: Pitfalls, solutions and future challenges. J Neurosci Methods, 260 , 221-232. doi:10.1016/j.jneumeth.2015.09.021Kaczmarek-Hajek, K., Zhang, J., Kopp, R., Grosche, A., Rissiek, B., Saul, A., . . . Nicke, A. (2018). Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. Elife, 7 . doi:10.7554/eLife.36217Kesavan, J., Watters, O., de Diego-Garcia, L., Mendez, A. M., Alves, M., Dinkel, K., . . . Engel, T. (2023). Functional expression of the ATP-gated P2X7 receptor in human iPSC-derived astrocytes. Purinergic Signal . doi:10.1007/s11302-023-09957-8Khan, M. T., Deussing, J., Tang, Y., & Illes, P. (2019). Astrocytic rather than neuronal P2X7 receptors modulate the function of the tri-synaptic network in the rodent hippocampus. Brain Res Bull, 151 , 164-173. doi:10.1016/j.brainresbull.2018.07.016Klein, P., Dingledine, R., Aronica, E., Bernard, C., Blumcke, I., Boison, D., . . . Loscher, W. (2018). Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia, 59 (1), 37-66. doi:10.1111/epi.13965Klein, P., Kaminski, R. M., Koepp, M., & Loscher, W. (2024). New epilepsy therapies in development. Nat Rev Drug Discov . doi:10.1038/s41573-024-00981-wLau, K. E. H., Nguyen, N. T., Kesavan, J. C., Langa, E., Fanning, K., Brennan, G. P., . . . Henshall, D. C. (2024). Differential microRNA editing may drive target pathway switching in human temporal lobe epilepsy. Brain Commun, 6 (1), fcad355. doi:10.1093/braincomms/fcad355Loscher, W., Klitgaard, H., Twyman, R. E., & Schmidt, D. (2013). New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov, 12 (10), 757-776. doi:10.1038/nrd4126Lu, X., Yang, J., & Xiang, Y. (2022). Modeling human neurodevelopmental diseases with brain organoids.Cell Regen, 11 (1), 1. doi:10.1186/s13619-021-00103-6Mamad, O., Heiland, M., Lindner, A. U., Hill, T. D. M., Ronroy, R. M., Rentrup, K., . . . Henshall, D. C. (2023). Anti-seizure effects of JNJ-54175446 in the intra-amygdala kainic acid model of drug-resistant temporal lobe epilepsy in mice. Front Pharmacol, 14 , 1308478. doi:10.3389/fphar.2023.1308478Morgan, J., Alves, M., Conte, G., Menendez-Mendez, A., de Diego-Garcia, L., de Leo, G., . . . Engel, T. (2020). Characterization of the Expression of the ATP-Gated P2X7 Receptor Following Status Epilepticus and during Epilepsy Using a P2X7-EGFP Reporter Mouse. Neurosci Bull, 36 (11), 1242-1258. doi:10.1007/s12264-020-00573-9Perucca, E., Perucca, P., White, H. S., & Wirrell, E. C. (2023). Drug resistance in epilepsy. Lancet Neurol, 22 (8), 723-734. doi:10.1016/S1474-4422(23)00151-5Pitkanen, A., Lukasiuk, K., Dudek, F. E., & Staley, K. J. (2015). Epileptogenesis.Cold Spring Harb Perspect Med, 5 (10). doi:10.1101/cshperspect.a022822Recourt, K., de Boer, P., van der Ark, P., Benes, H., van Gerven, J. M. A., Ceusters, M., . . . Jacobs, G. E. (2023). Characterization of the central nervous system penetrant and selective purine P2X7 receptor antagonist JNJ-54175446 in patients with major depressive disorder. Transl Psychiatry, 13 (1), 266. doi:10.1038/s41398-023-02557-5Rivetti di Val Cervo, P., Besusso, D., Conforti, P., & Cattaneo, E. (2021). hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nat Rev Neurol, 17 (6), 381-392. doi:10.1038/s41582-021-00465-0Rozmer, K., Gao, P., Araujo, M. G. L., Khan, M. T., Liu, J., Rong, W., . . . Illes, P. (2017). Pilocarpine-Induced Status Epilepticus Increases the Sensitivity of P2X7 and P2Y1 Receptors to Nucleotides at Neural Progenitor Cells of the Juvenile Rodent Hippocampus. Cereb Cortex, 27 (7), 3568-3585. doi:10.1093/cercor/bhw178Smith, J., Menendez Mendez, A., Alves, M., Parras, A., Conte, G., Bhattacharya, A., . . . Engel, T. (2023). The P2X7 receptor contributes to seizures and inflammation-driven long-lasting brain hyperexcitability following hypoxia in neonatal mice.Br J Pharmacol, 180 (13), 1710-1729. doi:10.1111/bph.16033Sperlagh, B., & Illes, P. (2014). P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci, 35 (10), 537-547. doi:10.1016/j.tips.2014.08.002Sperlagh, B., Kofalvi, A., Deuchars, J., Atkinson, L., Milligan, C. J., Buckley, N. J., & Vizi, E. S. (2002). Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. J Neurochem, 81 (6), 1196-1211. doi:10.1046/j.1471-4159.2002.00920.xSteinlein, O. K. (2008). Genetics and epilepsy. Dialogues Clin Neurosci, 10 (1), 29-38. doi:10.31887/DCNS.2008.10.1/oksteinleinStoberl, N., Maguire, E., Salis, E., Shaw, B., & Hall-Roberts, H. (2023). Human iPSC-derived glia models for the study of neuroinflammation. J Neuroinflammation, 20 (1), 231. doi:10.1186/s12974-023-02919-2Thijs, R. D., Surges, R., O’Brien, T. J., & Sander, J. W. (2019). Epilepsy in adults. Lancet, 393 (10172), 689-701. doi:10.1016/S0140-6736(18)32596-0Vezzani, A., French, J., Bartfai, T., & Baram, T. Z. (2011). The role of inflammation in epilepsy. Nat Rev Neurol, 7 (1), 31-40. doi:10.1038/nrneurol.2010.178