References
Alves, M., Gil, B., Villegas-Salmeron, J., Salari, V., Martins-Ferreira,
R., Arribas Blazquez, M., . . . Engel, T. (2024). Opposing effects of
the purinergic P2X7 receptor on seizures in neurons and microglia in
male mice. Brain Behav Immun .
doi:10.1016/j.bbi.2024.05.023Amhaoul, H., Ali, I., Mola, M., Van
Eetveldt, A., Szewczyk, K., Missault, S., . . . Dedeurwaerdere, S.
(2016). P2X7 receptor antagonism reduces the severity of spontaneous
seizures in a chronic model of temporal lobe epilepsy.Neuropharmacology, 105 , 175-185.
doi:10.1016/j.neuropharm.2016.01.018Amorim, R. P., Araujo, M. G. L.,
Valero, J., Lopes-Cendes, I., Pascoal, V. D. B., Malva, J. O., & da
Silva Fernandes, M. J. (2017). Silencing of P2X7R by RNA interference in
the hippocampus can attenuate morphological and behavioral impact of
pilocarpine-induced epilepsy. Purinergic Signal, 13 (4), 467-478.
doi:10.1007/s11302-017-9573-4Andrejew, R., Oliveira-Giacomelli, A.,
Ribeiro, D. E., Glaser, T., Arnaud-Sampaio, V. F., Lameu, C., & Ulrich,
H. (2020). The P2X7 Receptor: Central Hub of Brain Diseases. Front
Mol Neurosci, 13 , 124. doi:10.3389/fnmol.2020.00124Aronica, E., Bauer,
S., Bozzi, Y., Caleo, M., Dingledine, R., Gorter, J. A., . . . Kaminski,
R. M. (2017). Neuroinflammatory targets and treatments for epilepsy
validated in experimental models. Epilepsia, 58 Suppl 3 (Suppl 3),
27-38. doi:10.1111/epi.13783Autar, K., Guo, X., Rumsey, J. W., Long, C.
J., Akanda, N., Jackson, M., . . . Hickman, J. J. (2022). A functional
hiPSC-cortical neuron differentiation and maturation model and its
application to neurological disorders. Stem Cell Reports, 17 (1),
96-109. doi:10.1016/j.stemcr.2021.11.009Barros-Barbosa, A. R., Oliveira,
A., Lobo, M. G., Cordeiro, J. M., & Correia-de-Sa, P. (2018). Under
stressful conditions activation of the ionotropic P2X7 receptor
differentially regulates GABA and glutamate release from nerve terminals
of the rat cerebral cortex. Neurochem Int, 112 , 81-95.
doi:10.1016/j.neuint.2017.11.005Beamer, E., Fischer, W., & Engel, T.
(2017). The ATP-Gated P2X7 Receptor As a Target for the Treatment of
Drug-Resistant Epilepsy. Front Neurosci, 11 , 21.
doi:10.3389/fnins.2017.00021Beamer, E., Kuchukulla, M., Boison, D., &
Engel, T. (2021). ATP and adenosine-Two players in the control of
seizures and epilepsy development. Prog Neurobiol, 204 , 102105.
doi:10.1016/j.pneurobio.2021.102105Beamer, E., Morgan, J., Alves, M.,
Menendez Mendez, A., Morris, G., Zimmer, B., . . . Engel, T. (2022).
Increased expression of the ATP-gated P2X7 receptor reduces
responsiveness to anti-convulsants during status epilepticus in mice.Br J Pharmacol, 179 (12), 2986-3006.
doi:10.1111/bph.15785Cuellar-Santoyo, A. O., Ruiz-Rodriguez, V. M.,
Mares-Barbosa, T. B., Patron-Soberano, A., Howe, A. G., Portales-Perez,
D. P., . . . Estrada-Sanchez, A. M. (2022). Revealing the contribution
of astrocytes to glutamatergic neuronal transmission. Front Cell
Neurosci, 16 , 1037641. doi:10.3389/fncel.2022.1037641Devinsky, O.,
Vezzani, A., Najjar, S., De Lanerolle, N. C., & Rogawski, M. A. (2013).
Glia and epilepsy: excitability and inflammation. Trends Neurosci,
36 (3), 174-184. doi:10.1016/j.tins.2012.11.008Dogan, E., Aygun, H.,
Arslan, G., Rzayev, E., Avci, B., Ayyildiz, M., & Agar, E. (2020). The
Role of NMDA Receptors in the Effect of Purinergic P2X7 Receptor on
Spontaneous Seizure Activity in WAG/Rij Rats With Genetic Absence
Epilepsy. Front Neurosci, 14 , 414.
doi:10.3389/fnins.2020.00414Dona, F., Ulrich, H., Persike, D. S.,
Conceicao, I. M., Blini, J. P., Cavalheiro, E. A., & Fernandes, M. J.
(2009). Alteration of purinergic P2X4 and P2X7 receptor expression in
rats with temporal-lobe epilepsy induced by pilocarpine. Epilepsy
Res, 83 (2-3), 157-167.
doi:10.1016/j.eplepsyres.2008.10.008Donnelly-Roberts, D. L., Namovic, M.
T., Han, P., & Jarvis, M. F. (2009). Mammalian P2X7 receptor
pharmacology: comparison of recombinant mouse, rat and human P2X7
receptors. Br J Pharmacol, 157 (7), 1203-1214.
doi:10.1111/j.1476-5381.2009.00233.xEngel, T. (2023). The P2X7 Receptor
as a Mechanistic Biomarker for Epilepsy. Int J Mol Sci, 24 (6).
doi:10.3390/ijms24065410Engel, T., Gomez-Villafuertes, R., Tanaka, K.,
Mesuret, G., Sanz-Rodriguez, A., Garcia-Huerta, P., . . .
Diaz-Hernandez, M. (2012). Seizure suppression and neuroprotection by
targeting the purinergic P2X7 receptor during status epilepticus in
mice. FASEB J, 26 (4), 1616-1628. doi:10.1096/fj.11-196089Engel,
T., Smith, J., & Alves, M. (2021). Targeting Neuroinflammation via
Purinergic P2 Receptors for Disease Modification in Drug-Refractory
Epilepsy. J Inflamm Res, 14 , 3367-3392.
doi:10.2147/JIR.S287740Fischer, W., Franke, H., Krugel, U., Muller, H.,
Dinkel, K., Lord, B., . . . Engel, T. (2016). Critical Evaluation of
P2X7 Receptor Antagonists in Selected Seizure Models. PLoS One,
11 (6), e0156468. doi:10.1371/journal.pone.0156468Francistiova, L.,
Voros, K., Lovasz, Z., Dinnyes, A., & Kobolak, J. (2021). Detection and
Functional Evaluation of the P2X7 Receptor in hiPSC Derived Neurons and
Microglia-Like Cells. Front Mol Neurosci, 14 , 793769.
doi:10.3389/fnmol.2021.793769Halassa, M. M., & Haydon, P. G. (2010).
Integrated brain circuits: astrocytic networks modulate neuronal
activity and behavior. Annu Rev Physiol, 72 , 335-355.
doi:10.1146/annurev-physiol-021909-135843Hedegaard, A., Monzon-Sandoval,
J., Newey, S. E., Whiteley, E. S., Webber, C., & Akerman, C. J. (2020).
Pro-maturational Effects of Human iPSC-Derived Cortical Astrocytes upon
iPSC-Derived Cortical Neurons. Stem Cell Reports, 15 (1), 38-51.
doi:10.1016/j.stemcr.2020.05.003Hirose, S., Tanaka, Y., Shibata, M.,
Kimura, Y., Ishikawa, M., Higurashi, N., . . . Ishii, A. (2020).
Application of induced pluripotent stem cells in epilepsy. Mol
Cell Neurosci, 108 , 103535. doi:10.1016/j.mcn.2020.103535Hyvarinen, T.,
Hagman, S., Ristola, M., Sukki, L., Veijula, K., Kreutzer, J., . . .
Narkilahti, S. (2019). Co-stimulation with IL-1beta and TNF-alpha
induces an inflammatory reactive astrocyte phenotype with
neurosupportive characteristics in a human pluripotent stem cell model
system. Sci Rep, 9 (1), 16944.
doi:10.1038/s41598-019-53414-9Illes, P., Khan, T. M., & Rubini, P.
(2017). Neuronal P2X7 Receptors Revisited: Do They Really Exist? J
Neurosci, 37 (30), 7049-7062.
doi:10.1523/JNEUROSCI.3103-16.2017Jimenez-Mateos, E. M.,
Arribas-Blazquez, M., Sanz-Rodriguez, A., Concannon, C., Olivos-Ore, L.
A., Reschke, C. R., . . . Engel, T. (2015). microRNA targeting of the
P2X7 purinoceptor opposes a contralateral epileptogenic focus in the
hippocampus. Sci Rep, 5 , 17486.
doi:10.1038/srep17486Jimenez-Pacheco, A., Diaz-Hernandez, M.,
Arribas-Blazquez, M., Sanz-Rodriguez, A., Olivos-Ore, L. A., Artalejo,
A. R., . . . Henshall, D. C. (2016). Transient P2X7 Receptor Antagonism
Produces Lasting Reductions in Spontaneous Seizures and Gliosis in
Experimental Temporal Lobe Epilepsy. J Neurosci, 36 (22),
5920-5932. doi:10.1523/JNEUROSCI.4009-15.2016Jimenez-Pacheco, A.,
Mesuret, G., Sanz-Rodriguez, A., Tanaka, K., Mooney, C., Conroy, R., . .
. Engel, T. (2013). Increased neocortical expression of the P2X7
receptor after status epilepticus and anticonvulsant effect of P2X7
receptor antagonist A-438079. Epilepsia, 54 (9), 1551-1561.
doi:10.1111/epi.12257Johnson, M. A., Weick, J. P., Pearce, R. A., &
Zhang, S. C. (2007). Functional neural development from human embryonic
stem cells: accelerated synaptic activity via astrocyte coculture.J Neurosci, 27 (12), 3069-3077.
doi:10.1523/JNEUROSCI.4562-06.2007Jones, R. S., da Silva, A. B.,
Whittaker, R. G., Woodhall, G. L., & Cunningham, M. O. (2016). Human
brain slices for epilepsy research: Pitfalls, solutions and future
challenges. J Neurosci Methods, 260 , 221-232.
doi:10.1016/j.jneumeth.2015.09.021Kaczmarek-Hajek, K., Zhang, J., Kopp,
R., Grosche, A., Rissiek, B., Saul, A., . . . Nicke, A. (2018).
Re-evaluation of neuronal P2X7 expression using novel mouse models and a
P2X7-specific nanobody. Elife, 7 . doi:10.7554/eLife.36217Kesavan,
J., Watters, O., de Diego-Garcia, L., Mendez, A. M., Alves, M., Dinkel,
K., . . . Engel, T. (2023). Functional expression of the ATP-gated P2X7
receptor in human iPSC-derived astrocytes. Purinergic Signal .
doi:10.1007/s11302-023-09957-8Khan, M. T., Deussing, J., Tang, Y., &
Illes, P. (2019). Astrocytic rather than neuronal P2X7 receptors
modulate the function of the tri-synaptic network in the rodent
hippocampus. Brain Res Bull, 151 , 164-173.
doi:10.1016/j.brainresbull.2018.07.016Klein, P., Dingledine, R.,
Aronica, E., Bernard, C., Blumcke, I., Boison, D., . . . Loscher, W.
(2018). Commonalities in epileptogenic processes from different acute
brain insults: Do they translate? Epilepsia, 59 (1), 37-66.
doi:10.1111/epi.13965Klein, P., Kaminski, R. M., Koepp, M., & Loscher,
W. (2024). New epilepsy therapies in development. Nat Rev Drug
Discov . doi:10.1038/s41573-024-00981-wLau, K. E. H., Nguyen, N. T.,
Kesavan, J. C., Langa, E., Fanning, K., Brennan, G. P., . . . Henshall,
D. C. (2024). Differential microRNA editing may drive target pathway
switching in human temporal lobe epilepsy. Brain Commun, 6 (1),
fcad355. doi:10.1093/braincomms/fcad355Loscher, W., Klitgaard, H.,
Twyman, R. E., & Schmidt, D. (2013). New avenues for anti-epileptic
drug discovery and development. Nat Rev Drug Discov, 12 (10),
757-776. doi:10.1038/nrd4126Lu, X., Yang, J., & Xiang, Y. (2022).
Modeling human neurodevelopmental diseases with brain organoids.Cell Regen, 11 (1), 1. doi:10.1186/s13619-021-00103-6Mamad, O.,
Heiland, M., Lindner, A. U., Hill, T. D. M., Ronroy, R. M., Rentrup, K.,
. . . Henshall, D. C. (2023). Anti-seizure effects of JNJ-54175446 in
the intra-amygdala kainic acid model of drug-resistant temporal lobe
epilepsy in mice. Front Pharmacol, 14 , 1308478.
doi:10.3389/fphar.2023.1308478Morgan, J., Alves, M., Conte, G.,
Menendez-Mendez, A., de Diego-Garcia, L., de Leo, G., . . . Engel, T.
(2020). Characterization of the Expression of the ATP-Gated P2X7
Receptor Following Status Epilepticus and during Epilepsy Using a
P2X7-EGFP Reporter Mouse. Neurosci Bull, 36 (11), 1242-1258.
doi:10.1007/s12264-020-00573-9Perucca, E., Perucca, P., White, H. S., &
Wirrell, E. C. (2023). Drug resistance in epilepsy. Lancet Neurol,
22 (8), 723-734. doi:10.1016/S1474-4422(23)00151-5Pitkanen, A.,
Lukasiuk, K., Dudek, F. E., & Staley, K. J. (2015). Epileptogenesis.Cold Spring Harb Perspect Med, 5 (10).
doi:10.1101/cshperspect.a022822Recourt, K., de Boer, P., van der Ark,
P., Benes, H., van Gerven, J. M. A., Ceusters, M., . . . Jacobs, G. E.
(2023). Characterization of the central nervous system penetrant and
selective purine P2X7 receptor antagonist JNJ-54175446 in patients with
major depressive disorder. Transl Psychiatry, 13 (1), 266.
doi:10.1038/s41398-023-02557-5Rivetti di Val Cervo, P., Besusso, D.,
Conforti, P., & Cattaneo, E. (2021). hiPSCs for predictive modelling of
neurodegenerative diseases: dreaming the possible. Nat Rev Neurol,
17 (6), 381-392. doi:10.1038/s41582-021-00465-0Rozmer, K., Gao, P.,
Araujo, M. G. L., Khan, M. T., Liu, J., Rong, W., . . . Illes, P.
(2017). Pilocarpine-Induced Status Epilepticus Increases the Sensitivity
of P2X7 and P2Y1 Receptors to Nucleotides at Neural Progenitor Cells of
the Juvenile Rodent Hippocampus. Cereb Cortex, 27 (7), 3568-3585.
doi:10.1093/cercor/bhw178Smith, J., Menendez Mendez, A., Alves, M.,
Parras, A., Conte, G., Bhattacharya, A., . . . Engel, T. (2023). The
P2X7 receptor contributes to seizures and inflammation-driven
long-lasting brain hyperexcitability following hypoxia in neonatal mice.Br J Pharmacol, 180 (13), 1710-1729.
doi:10.1111/bph.16033Sperlagh, B., & Illes, P. (2014). P2X7 receptor:
an emerging target in central nervous system diseases. Trends
Pharmacol Sci, 35 (10), 537-547. doi:10.1016/j.tips.2014.08.002Sperlagh,
B., Kofalvi, A., Deuchars, J., Atkinson, L., Milligan, C. J., Buckley,
N. J., & Vizi, E. S. (2002). Involvement of P2X7 receptors in the
regulation of neurotransmitter release in the rat hippocampus. J
Neurochem, 81 (6), 1196-1211.
doi:10.1046/j.1471-4159.2002.00920.xSteinlein, O. K. (2008). Genetics
and epilepsy. Dialogues Clin Neurosci, 10 (1), 29-38.
doi:10.31887/DCNS.2008.10.1/oksteinleinStoberl, N., Maguire, E., Salis,
E., Shaw, B., & Hall-Roberts, H. (2023). Human iPSC-derived glia models
for the study of neuroinflammation. J Neuroinflammation, 20 (1),
231. doi:10.1186/s12974-023-02919-2Thijs, R. D., Surges, R., O’Brien, T.
J., & Sander, J. W. (2019). Epilepsy in adults. Lancet,
393 (10172), 689-701. doi:10.1016/S0140-6736(18)32596-0Vezzani, A.,
French, J., Bartfai, T., & Baram, T. Z. (2011). The role of
inflammation in epilepsy. Nat Rev Neurol, 7 (1), 31-40.
doi:10.1038/nrneurol.2010.178