References
1. Elliott, W. A. Wild Rice. in Hybridization of crop plants (eds. Fehr, W. R. & Hadley, H. H.) 721–731 (American Society of
Agronomy Madison, WI, 1980).2. Grombacher, A. W., Porter, R. A. &
Everett, L. A. Breeding Wild Rice. in Plant Breeding Reviews 237–265 (John Wiley & Sons, Inc., 1997).
doi:10.1002/9780470650073.CH83. de Wet, J. M. J. & Oelke, E. A.
Domestication of American wild rice (Zizania aquatica L., Gramineae).J. d’agriculture Tradit. Bot. appliquée 25 , 67–84
(1978).4. Drewes, A. D. & Silbernagel, J. Setting up an integrative
research approach for sustaining wild rice (Zizania palustris) in the
Upper Great Lakes Region of North America. in From Landscape
Research to Landscape Planning: Aspects of Integration, Education, and
Application (eds. Tress, B., Tress, G., Fry, G. & Opdam, P.)12 , 377–386 (Springer, 2005).5. Lu, Y., Waller, D. M. &
David, P. Genetic variability is correlated with population size and
reproduction in American wild-rice (Zizania palustris var. palustris,
Poaceae) populations. Am. J. Bot. 92 , 990–997 (2005).6.
Myrbo, A. et al. Sulfide Generated by Sulfate Reduction is a
Primary Controller of the Occurrence of Wild Rice ( Zizania
palustris ) in Shallow Aquatic Ecosystems. J. Geophys. Res.
Biogeosciences 122 , 2736–2753 (2017).7. Dean Biesboer, D.
Thematic Section: Opinions about Aquatic Ecology in a Changing World.Acta Limnol. Bras. 31 , 102 (2019).8. Desmarais, S.
Returning The Rice to the Wild: Revitalizing Wild Rice in the Great
Lakes Region Through Indigenous Knowledge Governance and Establishing a
Geographical Indication. Lakehead Law J. 3 , 36–51
(2019).9. Moyle, J. B. Wild Rice in Minnesota. J. Wildl. Manage. 8 , 177 (1944).10. Fannucchi, W. Wildlife use of wild rice
beds and the impact of rice harvesting on wildlife in east central
Minnesota . (University of Wisconsin-Stevens Point, College of Natural
Resources, 1983).11. Rogosin, A. An ecological history of wild
rice . (Minnesota Department of Conservation, Division of Game and Fish,
1954).12. Matson, L. et al. Transforming research and
relationships through collaborative tribal-university partnerships on
Manoomin (wild rice). Environ. Sci. Policy 115 , 108–115
(2021).13. Oelke, E. A. et al. Wild rice production in Minnesota.Agricultural Extension Service Bulletin 464 , 4–5
(1982).14. Norrgard, R. An overview of threats to the future of wild
rice conservation and management. in Manoomin Niikaanisag Wild
Rice Coalition Building and Conference 8–11 (2006).15. Hansen, D.
Natural wild rice in Minnesota. A Wild Rice Study Doc. Submitt. to
Minnesota Legis. by Minnesota Dep. Resour. (2008).16. Terrell, E. E.,
Peterson, P. M., Reveal, J. L. & Duvall, M. R. Taxonomy of north
american species of zizania (poaceae). SIDA, Contrib. to Bot. 17 , 533–549 (1997).17. Maiz-Tome, L. Zizania aquatica.The IUCN Red List of Threatened Species (2016). Available at:
https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T64326324A67731287.en.
(Accessed: 3rd August 2023)18. Fort, D. J. et al. Toxicity of
sulfate and chloride to early life stages of wild rice ( Zizania
palustris ). Environ. Toxicol. Chem. 33 , 2802–2809
(2014).19. Probert, R. J. & Longley, P. L. Recalcitrant Seed Storage
Physiology in Three Aquatic Grasses (Zizania palustris ,Spartina anglica and Porteresia coarctata ). Ann.
Bot. 63 , 53–63 (1989).20. Frankel, S. O. H. Genetic
conservation of plants useful to man. Biol. Conserv. 2 ,
162–168 (1970).21. Ellegren, H. & Galtier, N. Determinants of genetic
diversity. Nature Reviews Genetics 17 , 422–433
(2016).22. Sgrò, C. M., Lowe, A. J. & Hoffmann, A. A. Building
evolutionary resilience for conserving biodiversity under climate
change. Evol. Appl. 4 , 326–337 (2011).23. Santamaría,
L. & Méndez, P. F. Evolution in biodiversity policy – current gaps and
future needs. Evol. Appl. 5 , 202–218 (2012).24. Kahler,
A. L., Kern, A. J., Porter, R. A. & Phillips, R. L. Maintaining food
value of wild rice (Zizania palustris L.) using comparative genomics. inGenomics of Plant Genetic Resources 2 , 233–248
(Springer Netherlands, 2014).25. Diller, S. N., McNaught, A. S.,
Swanson, B. J., Dannenhoffer, J. M. & Ogren, S. Genetic Structure and
Morphometric Variation among Fragmented Michigan Wild Rice Populations.Wetlands 38 , 793–805 (2018).26. Collard, B. C. Y.,
Jahufer, M. Z. Z., Brouwer, J. B. & Pang, E. C. K. An introduction to
markers, quantitative trait loci (QTL) mapping and marker-assisted
selection for crop improvement: The basic concepts. Euphytica 142 , 169–196 (2005).27. Elshire, R. J. et al. A Robust,
Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity
Species. PLoS One 6 , e19379 (2011).28. Shao, M., Haas,
M., Kern, A. & Kimball, J. Identification of single nucleotide
polymorphism markers for population genetic studies in Zizania
palustris L. Conserv. Genet. Resour. 12 , 451–455
(2019).29. Streiffer, R. An Ethical Analysis of Ojibway Objections to
Genomics and Genetics Research On Wild Rice. Number 12 ,
(2005).30. Raster, A. & Hill, C. G. The dispute over wild rice: an
investigation of treaty agreements and Ojibwe food sovereignty.Agric. Human Values 34 , 267–281 (2017).31. Gross, L. W.
The Resolution by the White Earth Anishinaabe Nation to Protect the
Inherent Rights of Wild Rice. in Clan and Tribal Perspectives on
Social, Economic and Environmental Sustainability 131–140 (Emerald
Publishing Limited, 2021).32. Andrews, S. FastQC: A quality control tool
for high throughput sequence data. (2010).33. Martin, M. Cutadapt
removes adapter sequences from high-throughput sequencing reads.EMBnet.journal 17 , 10 (2011).34. Haas, M. et al. Whole Genome Assembly and Annotation of Northern Wild Rice, Zizania
palustris L., Supports a Whole Genome Duplication in the Zizania Genus.Zizania Genus 2 , 3 (2021).35. Li, H. Aligning sequence
reads, clone sequences and assembly contigs with BWA-MEM. (2013).36. Li,
H. A statistical framework for SNP calling, mutation discovery,
association mapping and population genetical parameter estimation from
sequencing data. Bioinformatics 27 , 2987–2993
(2011).37. Li, H. et al. The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25 , 2078–2079 (2009).38.
Danecek, P. et al. The variant call format and VCFtools.Bioinformatics 27 , 2156–2158 (2011).39. Granato, I. S.
C. et al. snpReady: a tool to assist breeders in genomic
analysis. Mol. Breed. 38 , 1–7 (2018).40. R Core Team.
R: A language and environment for statistical computing. (2021).41.
Knaus, B. J. & Grünwald, N. J.
<scp>vcfr</scp> : a package to
manipulate and visualize variant call format data in R. Mol. Ecol.
Resour. 17 , 44–53 (2017).42. Purcell, S. et al. PLINK:
A tool set for whole-genome association and population-based linkage
analyses. Am. J. Hum. Genet. 81 , 559–575 (2007).43.
Oksanen, J. et al. vegan: Community ecology package. (2022).44.
Wickham, H. ggplot2: Elegant graphics for data analysis. (2016).45.
Jombart, T. adegenet: a R package for the multivariate analysis of
genetic markers. Bioinformatics 24 , 1403–1405
(2008).46. Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the
analysis of genome-wide SNP data. Bioinformatics 27 ,
3070–3071 (2011).47. Paradis, E. & Schliep, K. ape 5.0: an environment
for modern phylogenetics and evolutionary analyses in R.Bioinformatics 35 , 526–528 (2019).48. Kamvar, Z. N.,
Tabima, J. F. & Gr̈unwald, N. J. Poppr: An R package for genetic
analysis of populations with clonal, partially clonal, and/or sexual
reproduction. PeerJ 2014 , 1–14 (2014).49. Kamvar, Z.
N., Brooks, J. C. & Grünwald, N. J. Novel R tools for analysis of
genome-wide population genetic data with emphasis on clonality.Front. Genet. 6 , 208 (2015).50. Jacquemyn, H., Honnay,
O., Van Looy, K. & Breyne, P. Spatiotemporal structure of genetic
variation of a spreading plant metapopulation on dynamic riverbanks
along the Meuse River. Heredity (Edinb). 96 , 471–478
(2006).51. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of
Population Structure Using Multilocus Genotype Data. Genetics 155 , 945–959 (2000).52. Francis, R. M. pophelper: an R package
and web app to analyse and visualise population structure. Mol.
Ecol. Resour. 17 , 27–32 (2017).53. Earl, D. A. & vonHoldt,
B. M. STRUCTURE HARVESTER: A website and program for visualizing
STRUCTURE output and implementing the Evanno method. Conserv.
Genet. Resour. 4 , 359–361 (2012).54. Evanno, G., Regnaut, S.
& Goudet, J. Detecting the number of clusters of individuals using the
software structure: a simulation study. Mol. Ecol. 14 ,
2611–2620 (2005).55. Excoffier, L., Smouse, P. E. & Quattro, J. M.
Analysis of molecular variance inferred from metric distances among DNA
haplotypes: application to human mitochondrial DNA restriction data.Genetics 131 , 479–491 (1992).56. Dray, S. & Dufour, A.
B. The ade4 package: Implementing the duality diagram for ecologists.J. Stat. Softw. 22 , 1–20 (2007).57. Hijmans, R.
geosphere: Spherical trigonometry. (2022).58. Weir, B. S. & Cockerham,
C. C. Estimating F-Statistics for the Analysis of Population Structure.Evolution (N. Y). 38 , 1358–1370 (1984).59. Pembleton,
W., Cogan, N. O. I. & Forster, J. W. StAMPP: an R package for
calculation of genetic differentiation and structure of mixed-ploidy
level populations. Mol. Ecol. Resour. 13 , 946–952
(2013).60. Malinsky, M., Matschiner, M. & Svardal, H. Dsuite ‐ FastD ‐statistics and related admixture evidence from VCF files.Mol. Ecol. Resour. 21 , 584–595 (2021).61. Nei, M.Molecular Evolutionary Genetics . Columbia University Press (Columbia University Press, 1987). doi:doi:10.7312/nei-9203862. Tajima,
F. Statistical method for testing the neutral mutation hypothesis by DNA
polymorphism. Genetics 123 , 585–595 (1989).63. Chen,
H., Patterson, N. & Reich, D. Population differentiation as a test for
selective sweeps. Genome Res. 20 , 393–402 (2010).64.
Delfini, J. et al. Population structure, genetic diversity and
genomic selection signatures among a Brazilian common bean germplasm.Sci. Rep. 11 , 2964 (2021).65. Tuttle, H. K., Del Rio, A.
H., Bamberg, J. & Shannon, L. M. Potato soup: analysis of cultivated
potato gene bank populations reveals high diversity and little
structure. Front. Plant Sci. 15 , 1429279 (2024).66.
Migicovsky, Z. et al. Genomic consequences of apple improvement.Hortic. Res. 8 , 9 (2021).67. Bredeson, J. V et
al. Sequencing wild and cultivated cassava and related species reveals
extensive interspecific hybridization and genetic diversity. Nat.
Biotechnol. 34 , 562–570 (2016).68. García-Abadillo, J.et al. Dissecting the complex genetic basis of pre- and
post-harvest traits in Vitis vinifera L. using genome-wide association
studies. Hortic. Res. 11 , uhad283 (2024).69. Arnold, B.,
Corbett-Detig, R. B., Hartl, D. & Bomblies, K. RADseq underestimates
diversity and introduces genealogical biases due to nonrandom haplotype
sampling. Mol. Ecol. 22 , 3179–3190 (2013).70. Xu, X.,
Ke, W., Yu, X., Wen, J. & Ge, S. Preliminary study on population
genetic structure and phylogeography of the wild and cultivatedZizania latifolia (Poaceae) based on Adh1a sequences.Theor. Appl. Genet. 116 , 835–843 (2008).71. Xu, X.et al. Phylogeny and biogeography of the eastern Asian–North
American disjunct wild-rice genus ( Zizania L., Poaceae).Mol. Phylogenet. Evol. 55 , 1008–1017 (2010).72. Guo, L.et al. A host plant genome (Zizania latifolia) after a
century-long endophyte infection. Plant J. 83 , 600–609
(2015).73. Tang, L. et al. Phylogeny and biogeography of the rice
tribe (Oryzeae): Evidence from combined analysis of 20 chloroplast
fragments. Mol. Phylogenet. Evol. 54 , 266–277
(2010).74. Xu, X. W. et al. Comparative phylogeography of the
wild-rice genus Zizania (Poaceae) in eastern Asia and north America.Am. J. Bot. 102 , 239–247 (2015).75. Walker, S. A. DNA
sequence diversity in North American Zizania species. Purdue
University ProQuest Dissertations Publishing (ProQuest Dissertations
Publishing, 2011).76. Duvall, M. R. & Biesboer, D. D. Anatomical
distinctions between the pistillate spikelets of the species of
wild-rice (Zizania poaceae). Am. J. Bot. 75 , 157–159
(1988).77. Wright, S. The Interpretation of Population Structure by
F-Statistics with Special Regard to Systems of Mating. Evolution
(N. Y). 19 , 395–420 (1965).78. Gietzel, C., Duquette, J.,
McGilp, L. & Kimball, J. Recessive male floret color for tracking gene
flow in cultivated northern wild rice ( Zizania palustris L.).Crop Sci. 62 , 157–166 (2022).79. Oxley, F. M., Echlin,
A., Power, P., Tolley-Jordan, L. & Alexander, M. L. Travel of pollen in
experimental raceways in the endangered texas wild rice (Zizania
texana). Southwest. Nat. 53 , 169–174 (2008).80.
Brandes, H. Like Gold to Us: Native American Nations Struggle to Protect
Wild Rice. Sierra: The Magazine of the Sierra Club (2019).
Available at:
https://www.sierraclub.org/sierra/gold-us-native-american-nations-struggle-protect-wild-rice.
81. Porter, R. Wildrice (Zizania L.) in North America: Genetic
resources, conservation, and use. in North American Crop Wild
Relatives: Important Species 2 , 83–97 (Springer International
Publishing, 2019).82. Thompson, A. & Luthin, C. S. Wild Rice Community
Restoration. in Wetland Restoration Handbook for Wisconsin
Landowners 117–122 (Bureau of Science Services - Wisconsin DNR,
2010).83. David, P., David, L., Stark, H. K., Fahrlander, S. N. A. &
Schlender, J. M. Manoomin, Version 1.0. Gt. Lakes Indian Fish
Wildl. Comm. [Preprint].(Accessed December 3, 2020) (2019).84. Le
Clerc, V. et al. Indicators to assess temporal genetic diversity
in the French Catalogue: no losses for maize and peas. Theor.
Appl. Genet. 113 , 1197–1209 (2006).85. Deu, M. et al. Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in
Niger. Theor. Appl. Genet. 120 , 1301–1313 (2010).86.
Arya, L., Verma, M., Singh, S. & Verma, R. Spatio-temporal genetic
diversity in Indian barley (Hordeum vulgare L.) varieties based on SSR
markers. Indian J. Exp. Biol. 57 , 545–552 (2019).87.
Ozbek, O., Millet, E., Anikster, Y., Arslan, O. & Feldman, M.
Spatio-temporal genetic variation in populations of wild emmer wheat,
Triticum turgidum ssp. dicoccoides, as revealed by AFLP analysis.Theor. Appl. Genet. 115 , 19–26 (2007).88. Fačkovcová,
Z. et al. Spatio-temporal formation of the genetic diversity in
the Mediterranean dwelling lichen during the Neogene and Quaternary
epochs. Mol. Phylogenet. Evol. 144 , 106704 (2020).89.
Gray, A. Genetic diversity and its conservation in natural populations
of plants. Biodivers. Lett. 3 , 71–80 (1996).90.
González-Megías, A., Gómez, J. M. & Sánchez-Piñero, F. Spatio-temporal
change in the relationship between habitat heterogeneity and species
diversity. Acta Oecologica 37 , 179–186 (2011).91.
Waheed, A. Manoomin (wild rice) and environmental change at a
significant river system of the Lac du Flambeau Band of Lake Superior
Chippewa. University of Minnesota Digital Conservancy (University
of Minnesota, 2021).92. Gepts, P. & Papa, R. Possible effects of
(trans)gene flow from crops on the genetic diversity from landraces and
wild relatives. Environ. Biosaf. Res 2 , 89–103
(2003).93. Sonnante, G., Stockton, T., Nodari, R. O., Becerra Velásquez,
V. L. & Gepts, P. Evolution of genetic diversity during the
domestication of common-bean (Phaseolus vulgaris L.). Theor. Appl.
Genet. 89 , 629–635 (1994).94. Evans, M. M. S. & Kermicle, J.
L. Teosinte crossing barrier1, a locus governing hybridization of
teosinte with maize. Theor. Appl. Genet. 103 , 259–265
(2001).95. Gepts, P. A Comparison between Crop Domestication, Classical
Plant Breeding, and Genetic Engineering. Crop Sci. 42 ,
1780–1790 (2002).96. Li, Y.-H. et al. Genetic diversity in
domesticated soybean (Glycine max) and its wild progenitor (Glycine
soja) for simple sequence repeat and single-nucleotide polymorphism
loci. New Phytol. 188 , 242–253 (2010).97. Jeong, S.-C.et al. Genetic diversity patterns and domestication origin of
soybean. 132 , 1179–1193 (2019).98. Luo, M. C. et al. The structure of wild and domesticated emmer wheat populations, gene
flow between them, and the site of emmer domestication. Theor.
Appl. Genet. 114 , 947–959 (2007).99. Coulibaly, S., Pasquet,
R. S., Papa, R. & Gepts, P. AFLP analysis of the phenetic organization
and genetic diversity of Vigna unguiculata L. Walp. reveals extensive
gene flow between wild and domesticated types. Theor. Appl.
Genet. 104 , 358–366 (2002).100. Mariac, C. et al. Genetic diversity and gene flow among pearl millet crop/weed complex: A
case study. Theor. Appl. Genet. 113 , 1003–1014
(2006).101. Arriola, P. E. & Ellstrand, N. C. Crop-to-weed gene flow in
the genus Sorghum (Poaceae): Spontaneous interspecific
hybridization between johnsongrass, Sorghum halepense , and crop
sorghum, S. bicolor . Am. J. Bot. 83 , 1153–1159
(1996).102. Sagnard, F. et al. Genetic diversity, structure, gene
flow and evolutionary relationships within the Sorghum bicolor
wild-weedy-crop complex in a western African region. Theor. Appl.
Genet. 123 , 1231–1246 (2011).103. Zeder, M. A., Emshwiller,
E., Smith, B. D. & Bradley, D. G. Documenting domestication: The
intersection of genetics and archaeology. Trends in Genetics 22 , 139–155 (2006).104. Stalker, H. T., Warburton, M. L. & R,
H. J. The Dynamics of Domestication. in Harlan’s Crops and Man (eds. Stalker, H. T., Warburton, M. L. & R, H. J.) 147–170 (American
Society of Agronomy, Inc. and Crop Science Society of America, Inc.,
2021). doi:https://doi.org/10.1002/9780891186342.ch6105. Zhang, C.et al. Genome design of hybrid potato. Cell 184 ,
3873-3883.e12 (2021).106. Ekar, J. M. et al. Domestication in
Real Time: The Curious Case of a Trigenomic Sunflower Population.Agronomy 9 , (2019).107. Ji, W. et al. Quantitative proteomics reveals an important role of GsCBRLK in salt
stress response of soybean. Plant Soil 402 , 159–178
(2016).108. Hu, D. et al. Overexpression of MdSOS2L1, a CIPK
protein kinase, increases the antioxidant metabolites to enhance salt
tolerance in apple and tomato. Physiol. Plant. 156 ,
201–214 (2016).109. Ding, S., Zhang, B. & Qin, F. Arabidopsis
RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and
Drought Tolerance via SnRK2.6-Mediated Phosphorylation. Plant
Cell 27 , 3228–3244 (2015).110. Shu, K. & Yang, W. E3
Ubiquitin Ligases: Ubiquitous Actors in Plant Development and Abiotic
Stress Responses. Plant Cell Physiol. 58 , 1461–1476
(2017).111. Mérida-García, R. et al. High Resolution Melting and
Insertion Site-Based Polymorphism Markers for Wheat Variability Analysis
and Candidate Genes Selection at Drought and Heat MQTL Loci.Agron. 2020, Vol. 10, Page 1294 10 , 1294 (2020).112.
Duquette, J. & Kimball, J. A. Phenological stages of cultivated
northern wild rice according to the BBCH scale. Ann. Appl. Biol. 176 , 350–356 (2020).113. Campo, S. et al. Overexpression of a Calcium-Dependent Protein Kinase Confers Salt and
Drought Tolerance in Rice by Preventing Membrane Lipid Peroxidation.Plant Physiol. 165 , 688–704 (2014).114. Wei, S.et al. A rice calcium-dependent protein kinase OsCPK9 positively
regulates drought stress tolerance and spikelet fertility. BMC
Plant Biol. 14 , 1–13 (2014).115. Lin, D. et al. Mutation of the rice 12 gene encoding
2,3-bisphosphoglycerate-independent phosphoglycerate mutase affects
chlorophyll synthesis, photosynthesis and chloroplast development at
seedling stage at low temperatures. Plant Biol. 21 ,
585–594 (2019).116. Yang, L. et al. GsCBRLK, a
calcium/calmodulin-binding receptor-like kinase, is a positive regulator
of plant tolerance to salt and ABA stress. J. Exp. Bot. 61 , 2519–2533 (2010).117. Vega-Sánchez, M. E., Zeng, L., Chen,
S., Leung, H. & Wang, G.-L. SPIN1, a K Homology Domain Protein
Negatively Regulated and Ubiquitinated by the E3 Ubiquitin Ligase SPL11,
Is Involved in Flowering Time Control in Rice. Plant Cell 20 , 1456–1469 (2008).118. Bentolila, S., Alfonso, A. A. &
Hanson, M. R. A pentatricopeptide repeat-containing gene restores
fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad.
Sci. U. S. A. 99 , 10887–10892 (2002).119. Nakagawa, M.,
Shimamoto, K. & Kyozuka, J. Overexpression of RCN1 and RCN2, rice
TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase
transition and altered panicle morphology in rice. Plant J. 29 , 743–750 (2002).120. He, P. et al. Identification of
a fungal cytochrome P450 with steroid two-step ordered selective
hydroxylation characteristics in Colletotrichum lini. J. Steroid
Biochem. Mol. Biol. 220 , 106096 (2022).121. Clement, C. R.
1492 and the loss of amazonian crop genetic resources. I. The relation
between domestication and human population decline. Econ. Bot. 53 , 188–202 (1999).122. Dempewolf, H., Rieseberg, L. H. &
Cronk, Q. C. Crop domestication in the Compositae: A family-wide trait
assessment. Genet. Resour. Crop Evol. 55 , 1141–1157
(2008).123. Hammer, K. & Khoshbakht, K. A domestication assessment of
the big five plant families. Genet. Resour. Crop Evol. 62 , 665–689 (2015).
Data Accessibility. All data generated from this project have
been deposited at the NCBI Sequence Read Archive under BioProject
PRJNA774842. All code for the analyses described can be found at
https://github.com/UMNKimballLab/WildRiceGeneticDiversity2022.