References
1. Elliott, W. A. Wild Rice. in Hybridization of crop plants (eds. Fehr, W. R. & Hadley, H. H.) 721–731 (American Society of Agronomy Madison, WI, 1980).2. Grombacher, A. W., Porter, R. A. & Everett, L. A. Breeding Wild Rice. in Plant Breeding Reviews 237–265 (John Wiley & Sons, Inc., 1997). doi:10.1002/9780470650073.CH83. de Wet, J. M. J. & Oelke, E. A. Domestication of American wild rice (Zizania aquatica L., Gramineae).J. d’agriculture Tradit. Bot. appliquée 25 , 67–84 (1978).4. Drewes, A. D. & Silbernagel, J. Setting up an integrative research approach for sustaining wild rice (Zizania palustris) in the Upper Great Lakes Region of North America. in From Landscape Research to Landscape Planning: Aspects of Integration, Education, and Application (eds. Tress, B., Tress, G., Fry, G. & Opdam, P.)12 , 377–386 (Springer, 2005).5. Lu, Y., Waller, D. M. & David, P. Genetic variability is correlated with population size and reproduction in American wild-rice (Zizania palustris var. palustris, Poaceae) populations. Am. J. Bot. 92 , 990–997 (2005).6. Myrbo, A. et al. Sulfide Generated by Sulfate Reduction is a Primary Controller of the Occurrence of Wild Rice ( Zizania palustris ) in Shallow Aquatic Ecosystems. J. Geophys. Res. Biogeosciences 122 , 2736–2753 (2017).7. Dean Biesboer, D. Thematic Section: Opinions about Aquatic Ecology in a Changing World.Acta Limnol. Bras. 31 , 102 (2019).8. Desmarais, S. Returning The Rice to the Wild: Revitalizing Wild Rice in the Great Lakes Region Through Indigenous Knowledge Governance and Establishing a Geographical Indication. Lakehead Law J. 3 , 36–51 (2019).9. Moyle, J. B. Wild Rice in Minnesota. J. Wildl. Manage. 8 , 177 (1944).10. Fannucchi, W. Wildlife use of wild rice beds and the impact of rice harvesting on wildlife in east central Minnesota . (University of Wisconsin-Stevens Point, College of Natural Resources, 1983).11. Rogosin, A. An ecological history of wild rice . (Minnesota Department of Conservation, Division of Game and Fish, 1954).12. Matson, L. et al. Transforming research and relationships through collaborative tribal-university partnerships on Manoomin (wild rice). Environ. Sci. Policy 115 , 108–115 (2021).13. Oelke, E. A. et al. Wild rice production in Minnesota.Agricultural Extension Service Bulletin 464 , 4–5 (1982).14. Norrgard, R. An overview of threats to the future of wild rice conservation and management. in Manoomin Niikaanisag Wild Rice Coalition Building and Conference 8–11 (2006).15. Hansen, D. Natural wild rice in Minnesota. A Wild Rice Study Doc. Submitt. to Minnesota Legis. by Minnesota Dep. Resour. (2008).16. Terrell, E. E., Peterson, P. M., Reveal, J. L. & Duvall, M. R. Taxonomy of north american species of zizania (poaceae). SIDA, Contrib. to Bot. 17 , 533–549 (1997).17. Maiz-Tome, L. Zizania aquatica.The IUCN Red List of Threatened Species (2016). Available at: https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T64326324A67731287.en. (Accessed: 3rd August 2023)18. Fort, D. J. et al. Toxicity of sulfate and chloride to early life stages of wild rice ( Zizania palustris ). Environ. Toxicol. Chem. 33 , 2802–2809 (2014).19. Probert, R. J. & Longley, P. L. Recalcitrant Seed Storage Physiology in Three Aquatic Grasses (Zizania palustris ,Spartina anglica and Porteresia coarctata ). Ann. Bot. 63 , 53–63 (1989).20. Frankel, S. O. H. Genetic conservation of plants useful to man. Biol. Conserv. 2 , 162–168 (1970).21. Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nature Reviews Genetics 17 , 422–433 (2016).22. Sgrò, C. M., Lowe, A. J. & Hoffmann, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4 , 326–337 (2011).23. Santamaría, L. & Méndez, P. F. Evolution in biodiversity policy – current gaps and future needs. Evol. Appl. 5 , 202–218 (2012).24. Kahler, A. L., Kern, A. J., Porter, R. A. & Phillips, R. L. Maintaining food value of wild rice (Zizania palustris L.) using comparative genomics. inGenomics of Plant Genetic Resources 2 , 233–248 (Springer Netherlands, 2014).25. Diller, S. N., McNaught, A. S., Swanson, B. J., Dannenhoffer, J. M. & Ogren, S. Genetic Structure and Morphometric Variation among Fragmented Michigan Wild Rice Populations.Wetlands 38 , 793–805 (2018).26. Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B. & Pang, E. C. K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142 , 169–196 (2005).27. Elshire, R. J. et al. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS One 6 , e19379 (2011).28. Shao, M., Haas, M., Kern, A. & Kimball, J. Identification of single nucleotide polymorphism markers for population genetic studies in Zizania palustris L. Conserv. Genet. Resour. 12 , 451–455 (2019).29. Streiffer, R. An Ethical Analysis of Ojibway Objections to Genomics and Genetics Research On Wild Rice. Number 12 , (2005).30. Raster, A. & Hill, C. G. The dispute over wild rice: an investigation of treaty agreements and Ojibwe food sovereignty.Agric. Human Values 34 , 267–281 (2017).31. Gross, L. W. The Resolution by the White Earth Anishinaabe Nation to Protect the Inherent Rights of Wild Rice. in Clan and Tribal Perspectives on Social, Economic and Environmental Sustainability 131–140 (Emerald Publishing Limited, 2021).32. Andrews, S. FastQC: A quality control tool for high throughput sequence data. (2010).33. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.EMBnet.journal 17 , 10 (2011).34. Haas, M. et al. Whole Genome Assembly and Annotation of Northern Wild Rice, Zizania palustris L., Supports a Whole Genome Duplication in the Zizania Genus.Zizania Genus 2 , 3 (2021).35. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. (2013).36. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27 , 2987–2993 (2011).37. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25 , 2078–2079 (2009).38. Danecek, P. et al. The variant call format and VCFtools.Bioinformatics 27 , 2156–2158 (2011).39. Granato, I. S. C. et al. snpReady: a tool to assist breeders in genomic analysis. Mol. Breed. 38 , 1–7 (2018).40. R Core Team. R: A language and environment for statistical computing. (2021).41. Knaus, B. J. & Grünwald, N. J. <scp>vcfr</scp> : a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17 , 44–53 (2017).42. Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81 , 559–575 (2007).43. Oksanen, J. et al. vegan: Community ecology package. (2022).44. Wickham, H. ggplot2: Elegant graphics for data analysis. (2016).45. Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24 , 1403–1405 (2008).46. Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27 , 3070–3071 (2011).47. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R.Bioinformatics 35 , 526–528 (2019).48. Kamvar, Z. N., Tabima, J. F. & Gr̈unwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014 , 1–14 (2014).49. Kamvar, Z. N., Brooks, J. C. & Grünwald, N. J. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality.Front. Genet. 6 , 208 (2015).50. Jacquemyn, H., Honnay, O., Van Looy, K. & Breyne, P. Spatiotemporal structure of genetic variation of a spreading plant metapopulation on dynamic riverbanks along the Meuse River. Heredity (Edinb). 96 , 471–478 (2006).51. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 155 , 945–959 (2000).52. Francis, R. M. pophelper: an R package and web app to analyse and visualise population structure. Mol. Ecol. Resour. 17 , 27–32 (2017).53. Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4 , 359–361 (2012).54. Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14 , 2611–2620 (2005).55. Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data.Genetics 131 , 479–491 (1992).56. Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists.J. Stat. Softw. 22 , 1–20 (2007).57. Hijmans, R. geosphere: Spherical trigonometry. (2022).58. Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the Analysis of Population Structure.Evolution (N. Y). 38 , 1358–1370 (1984).59. Pembleton, W., Cogan, N. O. I. & Forster, J. W. StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13 , 946–952 (2013).60. Malinsky, M., Matschiner, M. & Svardal, H. Dsuite ‐ FastD ‐statistics and related admixture evidence from VCF files.Mol. Ecol. Resour. 21 , 584–595 (2021).61. Nei, M.Molecular Evolutionary Genetics . Columbia University Press (Columbia University Press, 1987). doi:doi:10.7312/nei-9203862. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123 , 585–595 (1989).63. Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for selective sweeps. Genome Res. 20 , 393–402 (2010).64. Delfini, J. et al. Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm.Sci. Rep. 11 , 2964 (2021).65. Tuttle, H. K., Del Rio, A. H., Bamberg, J. & Shannon, L. M. Potato soup: analysis of cultivated potato gene bank populations reveals high diversity and little structure. Front. Plant Sci. 15 , 1429279 (2024).66. Migicovsky, Z. et al. Genomic consequences of apple improvement.Hortic. Res. 8 , 9 (2021).67. Bredeson, J. V et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. 34 , 562–570 (2016).68. García-Abadillo, J.et al. Dissecting the complex genetic basis of pre- and post-harvest traits in Vitis vinifera L. using genome-wide association studies. Hortic. Res. 11 , uhad283 (2024).69. Arnold, B., Corbett-Detig, R. B., Hartl, D. & Bomblies, K. RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol. Ecol. 22 , 3179–3190 (2013).70. Xu, X., Ke, W., Yu, X., Wen, J. & Ge, S. Preliminary study on population genetic structure and phylogeography of the wild and cultivatedZizania latifolia (Poaceae) based on Adh1a sequences.Theor. Appl. Genet. 116 , 835–843 (2008).71. Xu, X.et al. Phylogeny and biogeography of the eastern Asian–North American disjunct wild-rice genus ( Zizania L., Poaceae).Mol. Phylogenet. Evol. 55 , 1008–1017 (2010).72. Guo, L.et al. A host plant genome (Zizania latifolia) after a century-long endophyte infection. Plant J. 83 , 600–609 (2015).73. Tang, L. et al. Phylogeny and biogeography of the rice tribe (Oryzeae): Evidence from combined analysis of 20 chloroplast fragments. Mol. Phylogenet. Evol. 54 , 266–277 (2010).74. Xu, X. W. et al. Comparative phylogeography of the wild-rice genus Zizania (Poaceae) in eastern Asia and north America.Am. J. Bot. 102 , 239–247 (2015).75. Walker, S. A. DNA sequence diversity in North American Zizania species. Purdue University ProQuest Dissertations Publishing (ProQuest Dissertations Publishing, 2011).76. Duvall, M. R. & Biesboer, D. D. Anatomical distinctions between the pistillate spikelets of the species of wild-rice (Zizania poaceae). Am. J. Bot. 75 , 157–159 (1988).77. Wright, S. The Interpretation of Population Structure by F-Statistics with Special Regard to Systems of Mating. Evolution (N. Y). 19 , 395–420 (1965).78. Gietzel, C., Duquette, J., McGilp, L. & Kimball, J. Recessive male floret color for tracking gene flow in cultivated northern wild rice ( Zizania palustris L.).Crop Sci. 62 , 157–166 (2022).79. Oxley, F. M., Echlin, A., Power, P., Tolley-Jordan, L. & Alexander, M. L. Travel of pollen in experimental raceways in the endangered texas wild rice (Zizania texana). Southwest. Nat. 53 , 169–174 (2008).80. Brandes, H. Like Gold to Us: Native American Nations Struggle to Protect Wild Rice. Sierra: The Magazine of the Sierra Club (2019). Available at: https://www.sierraclub.org/sierra/gold-us-native-american-nations-struggle-protect-wild-rice. 81. Porter, R. Wildrice (Zizania L.) in North America: Genetic resources, conservation, and use. in North American Crop Wild Relatives: Important Species 2 , 83–97 (Springer International Publishing, 2019).82. Thompson, A. & Luthin, C. S. Wild Rice Community Restoration. in Wetland Restoration Handbook for Wisconsin Landowners 117–122 (Bureau of Science Services - Wisconsin DNR, 2010).83. David, P., David, L., Stark, H. K., Fahrlander, S. N. A. & Schlender, J. M. Manoomin, Version 1.0. Gt. Lakes Indian Fish Wildl. Comm. [Preprint].(Accessed December 3, 2020) (2019).84. Le Clerc, V. et al. Indicators to assess temporal genetic diversity in the French Catalogue: no losses for maize and peas. Theor. Appl. Genet. 113 , 1197–1209 (2006).85. Deu, M. et al. Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in Niger. Theor. Appl. Genet. 120 , 1301–1313 (2010).86. Arya, L., Verma, M., Singh, S. & Verma, R. Spatio-temporal genetic diversity in Indian barley (Hordeum vulgare L.) varieties based on SSR markers. Indian J. Exp. Biol. 57 , 545–552 (2019).87. Ozbek, O., Millet, E., Anikster, Y., Arslan, O. & Feldman, M. Spatio-temporal genetic variation in populations of wild emmer wheat, Triticum turgidum ssp. dicoccoides, as revealed by AFLP analysis.Theor. Appl. Genet. 115 , 19–26 (2007).88. Fačkovcová, Z. et al. Spatio-temporal formation of the genetic diversity in the Mediterranean dwelling lichen during the Neogene and Quaternary epochs. Mol. Phylogenet. Evol. 144 , 106704 (2020).89. Gray, A. Genetic diversity and its conservation in natural populations of plants. Biodivers. Lett. 3 , 71–80 (1996).90. González-Megías, A., Gómez, J. M. & Sánchez-Piñero, F. Spatio-temporal change in the relationship between habitat heterogeneity and species diversity. Acta Oecologica 37 , 179–186 (2011).91. Waheed, A. Manoomin (wild rice) and environmental change at a significant river system of the Lac du Flambeau Band of Lake Superior Chippewa. University of Minnesota Digital Conservancy (University of Minnesota, 2021).92. Gepts, P. & Papa, R. Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives. Environ. Biosaf. Res 2 , 89–103 (2003).93. Sonnante, G., Stockton, T., Nodari, R. O., Becerra Velásquez, V. L. & Gepts, P. Evolution of genetic diversity during the domestication of common-bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 89 , 629–635 (1994).94. Evans, M. M. S. & Kermicle, J. L. Teosinte crossing barrier1, a locus governing hybridization of teosinte with maize. Theor. Appl. Genet. 103 , 259–265 (2001).95. Gepts, P. A Comparison between Crop Domestication, Classical Plant Breeding, and Genetic Engineering. Crop Sci. 42 , 1780–1790 (2002).96. Li, Y.-H. et al. Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytol. 188 , 242–253 (2010).97. Jeong, S.-C.et al. Genetic diversity patterns and domestication origin of soybean. 132 , 1179–1193 (2019).98. Luo, M. C. et al. The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor. Appl. Genet. 114 , 947–959 (2007).99. Coulibaly, S., Pasquet, R. S., Papa, R. & Gepts, P. AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types. Theor. Appl. Genet. 104 , 358–366 (2002).100. Mariac, C. et al. Genetic diversity and gene flow among pearl millet crop/weed complex: A case study. Theor. Appl. Genet. 113 , 1003–1014 (2006).101. Arriola, P. E. & Ellstrand, N. C. Crop-to-weed gene flow in the genus Sorghum (Poaceae): Spontaneous interspecific hybridization between johnsongrass, Sorghum halepense , and crop sorghum, S. bicolor . Am. J. Bot. 83 , 1153–1159 (1996).102. Sagnard, F. et al. Genetic diversity, structure, gene flow and evolutionary relationships within the Sorghum bicolor wild-weedy-crop complex in a western African region. Theor. Appl. Genet. 123 , 1231–1246 (2011).103. Zeder, M. A., Emshwiller, E., Smith, B. D. & Bradley, D. G. Documenting domestication: The intersection of genetics and archaeology. Trends in Genetics 22 , 139–155 (2006).104. Stalker, H. T., Warburton, M. L. & R, H. J. The Dynamics of Domestication. in Harlan’s Crops and Man (eds. Stalker, H. T., Warburton, M. L. & R, H. J.) 147–170 (American Society of Agronomy, Inc. and Crop Science Society of America, Inc., 2021). doi:https://doi.org/10.1002/9780891186342.ch6105. Zhang, C.et al. Genome design of hybrid potato. Cell 184 , 3873-3883.e12 (2021).106. Ekar, J. M. et al. Domestication in Real Time: The Curious Case of a Trigenomic Sunflower Population.Agronomy 9 , (2019).107. Ji, W. et al. Quantitative proteomics reveals an important role of GsCBRLK in salt stress response of soybean. Plant Soil 402 , 159–178 (2016).108. Hu, D. et al. Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato. Physiol. Plant. 156 , 201–214 (2016).109. Ding, S., Zhang, B. & Qin, F. Arabidopsis RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and Drought Tolerance via SnRK2.6-Mediated Phosphorylation. Plant Cell 27 , 3228–3244 (2015).110. Shu, K. & Yang, W. E3 Ubiquitin Ligases: Ubiquitous Actors in Plant Development and Abiotic Stress Responses. Plant Cell Physiol. 58 , 1461–1476 (2017).111. Mérida-García, R. et al. High Resolution Melting and Insertion Site-Based Polymorphism Markers for Wheat Variability Analysis and Candidate Genes Selection at Drought and Heat MQTL Loci.Agron. 2020, Vol. 10, Page 1294 10 , 1294 (2020).112. Duquette, J. & Kimball, J. A. Phenological stages of cultivated northern wild rice according to the BBCH scale. Ann. Appl. Biol. 176 , 350–356 (2020).113. Campo, S. et al. Overexpression of a Calcium-Dependent Protein Kinase Confers Salt and Drought Tolerance in Rice by Preventing Membrane Lipid Peroxidation.Plant Physiol. 165 , 688–704 (2014).114. Wei, S.et al. A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol. 14 , 1–13 (2014).115. Lin, D. et al. Mutation of the rice 12 gene encoding 2,3-bisphosphoglycerate-independent phosphoglycerate mutase affects chlorophyll synthesis, photosynthesis and chloroplast development at seedling stage at low temperatures. Plant Biol. 21 , 585–594 (2019).116. Yang, L. et al. GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. J. Exp. Bot. 61 , 2519–2533 (2010).117. Vega-Sánchez, M. E., Zeng, L., Chen, S., Leung, H. & Wang, G.-L. SPIN1, a K Homology Domain Protein Negatively Regulated and Ubiquitinated by the E3 Ubiquitin Ligase SPL11, Is Involved in Flowering Time Control in Rice. Plant Cell 20 , 1456–1469 (2008).118. Bentolila, S., Alfonso, A. A. & Hanson, M. R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad. Sci. U. S. A. 99 , 10887–10892 (2002).119. Nakagawa, M., Shimamoto, K. & Kyozuka, J. Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J. 29 , 743–750 (2002).120. He, P. et al. Identification of a fungal cytochrome P450 with steroid two-step ordered selective hydroxylation characteristics in Colletotrichum lini. J. Steroid Biochem. Mol. Biol. 220 , 106096 (2022).121. Clement, C. R. 1492 and the loss of amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ. Bot. 53 , 188–202 (1999).122. Dempewolf, H., Rieseberg, L. H. & Cronk, Q. C. Crop domestication in the Compositae: A family-wide trait assessment. Genet. Resour. Crop Evol. 55 , 1141–1157 (2008).123. Hammer, K. & Khoshbakht, K. A domestication assessment of the big five plant families. Genet. Resour. Crop Evol. 62 , 665–689 (2015).
Data Accessibility. All data generated from this project have been deposited at the NCBI Sequence Read Archive under BioProject PRJNA774842. All code for the analyses described can be found at https://github.com/UMNKimballLab/WildRiceGeneticDiversity2022.