
Task scheduling method of revisit tasks for
satellite constellation towards wildfire
management

Zhijiang Wen, Yan Liu, Shengyu Zhang and Haiying Hu

Global warming increases forest wildfire risks to the economy,
environment, and human safety. Continuous satellite monitoring offers
accurate wildfire predictions and data-driven decision support. Earth
Observation Satellite Constellations(EOSC) enable periodic wildfire
tracking through revisit observations. Efficient scheduling of these tasks
is crucial for optimal constellation operation in wildfire management.
However, the existing EOSC scheduling algorithms rarely concentrates
on the scheduling of revisit tasks. In this paper, the revisit task
scheduling problem of the EOSC is expressed as a multi-objective
model. A time-driven multi-objective optimization method(TDMO) is
designed to optimize the constellation scheduling process of wildfire
observation tasks. TDMO has a time-driven feature and coupled with
revisit time in the task, experiments on different scheduling scenarios
show this method is effective in scheduling revisit tasks towards wildfire
targets.

Introduction: Wildfires pose significant hazards due to their large scale,
rapid development, and swift spread, necessitating effective monitoring
methods. EOSC, with its broad coverage and spectral diversity, is suitable
for wildfire monitoring. EOSC has an important capability in revisit
time, which refers to the time interval between successive visits over the
same location on the Earth’s surface. Revisit observations is crucial for
wildfire detection and monitoring. Periodic revisit tasks and large scale
of constellations pose challenges to task allocation, effective and rapid
scheduling is key to maintaining stability revisit services for EOSC.

The task scheduling method for the EOSC is designed to optimize the
observation profit while considering various complex constraints, which
give full play to the overall effectiveness of the EOSC. It is known
to be NP-Complete[1]. Several researchers have investigated the task
scheduling method of EOSC. Some use mixed integer linear program
formulation to build a mathematical model for the EOSC scheduling
problem[2, 3, 4, 5, 6, 7], to solve the formulation and decomposed the
issue as a master problem and multiple pricing problems.

Some studies divide the EOSC scheduling problem into task allocation
and scheduling, focusing on the setting of allocation rules[8, 7, 9].

However, none of these researchers scheduled the revisit tasks for
the EOSC. Moreover, most of the satellite constellations studied are
relatively small, typically consisting of around a dozen satellites [10,
11, 12, 13, 14, 15]. Also, researchers studying multi-objective satellite
scheduling problems have not considered the scheduling of revisit
tasks[16, 17, 18, 19].

As the size of EOSC increases, the complexity of the scheduling
problem grows exponentially. This increased complexity arises from
the need to manage more potential task assignments, more frequent
revisit requirements, and a greater number of constraints. Consequently,
multiple conflicting objectives must be considered simultaneously,
such as maximizing observation profits, ensuring timely revisits, and
optimizing resource utilization. The previously proposed methods, which
were effective for smaller constellations, fail to scale efficiently and
do not provide multi-objectives solutions of revisit tasks for larger
constellations.

In this letter, we propose the Time-Driven Multi-Objective (TDMO)
method to schedule wildfire observation tasks for large-scale EOSC,
aiming to dispatch all satellites in the constellation to continuously
maneuver and revisit wildfire targets. With this method, the revisit
cycle is also considered during the task allocation process, making
the distribution of revisit tasks more efficient and ensuring timely and
effective wildfire monitoring.

Objectives: Our scheduling goal is to make the constellation finish the
revisit observation efficiently. Regarding wildfire observation, we aim
to maximize the total number of wildfire targets revisited throughout
the scheduling horizon. On the other hand, minimizing the number
of observation tasks assigned to the target is necessary to ensure the
observation efficiently. In terms of satellite utilization, it is critical to
minimize the working time of the satellite and the uniformity of task
distribution for each satellite. This can extend the life of the constellation.

Considering the complex observation goals, a multi-objective mixed
integer model for the scheduling problem is constructed. Four objectives
are included in the optimization model.

• The objective of maximizing the number of revisited targets in the
scheduling horizon can be expressed as follows:

Maximize(ntar) (1)

Where ntar represent whether the number of target completes the
revisit in scheduling horizon.

• The objective of minimizing the number of observation tasks can be
expressed as:

Minimize(ntask) (2)

Where ntask is the number of task conducted in scheduling horizon.
• The objective of minimizing the satellite working time can be

expressed as follows:

Minimize(S(wk)) (3)

Where S(wk) represents the total maneuvering time of all satellites in
the constellation.

• The objective of minimizing the uniformity of tasks distribution can be
expressed as follows:

Minmizing(σ(sat)) (4)

Where σ(sat) represents the variance of all satellite maneuvering time.

Owing to the task specifications and the constrained resources of the
satellite, the above models are subject to many constraints. First, each
task has a visible time window(VTW), and the execution time of the task
should be within the time window. Second, the attitude transition needs
to be conducted for the EOS satellite. And Enough maneuvering time is
required between two consecutive tasks. Thirdly, the interval between two
observations for each revisit task must not be less than the observation
interval specified by the task.

Method: As shown in Figure(1), the TDMO method would follow the
allocation and task scheme generation in the evaluation process. The
process begins by inputting the satellite and target information. The
satellite information can be represented to nsat, {sid, v}. nsat is the
number of the satellite. Each satellite contains. Where the sid represents
the identity of observation satellites, v is the maneuver rate of the satellite.
Wildfire targets information contains ntar, {tid, vtw, t, re}. Where ntar

represents the quantity of all targets, tid is the, identity of observation
targets, vtw is the information of all VTWs. t is the current scheduling
time and re is the revisit time of the target . Then, TDMO is used to
initialization and evolution the task allocation process.

The task allocation method based on heuristic rule

Figure(1b) shows the task allocation process. For each target, calculate
all the VTWs during the scheduling horizon to compose the task
information. Then, we conduct a task allocation process for all the targets
in the scheduling scenario, which is driven by the revisit time as a cycle.
A scheduling horizon can be divided into multiple revisit cycles, each
cycle is allocated according to time sequence.

For current target in task allocation process, all observation time
windows within the revisit period are selected. Moreover, we truncate
the time window that exceed the revisit period. Then, the assignment
rule based on the scheduling objectives is performed to ensure that the
observation is conducted in the most suitable time window and satellite.
After the allocation of current target, the allocation process will conduct
to next target in the revisit cycle.

The allocation factors are shown as follows:

1 The time gap is the interval between the target’s last observed time
and the current task’s start time.

par1 = vtwi−1 − vtwi (5)

par1 indicates the time difference between the selected time window
vtwi and the previous observation windowvtwi−1, which reflects the
length of time that the target has not been observed. To finish the
revisit requirement with fewer observation tasks, the time difference
between target observation tasks should be close to the revisit time
cycle.
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Fig. 1. Flowchart of TDMO.

2 The uniformity of task distribution for current satellite implementation

par2 =

∑ntask
i ytaski

(ysat + 1) ∗ nsat
(6)

∑ntask
i ytaski

represents the total number of tasks that have been
assigned. ysatj indicates the number of tasks assigned to the current
satellite. par2 represents the uniformity of the current distribution. In
the process of task allocation, it is imperative to distribute tasks as
uniformly as possible. Ensuring that the operational duration of each
satellite is consistent contributes significantly to enhancing the overall
lifespan of the constellation.

3 Current maneuvering angle ∆g.

par3 =



0 (Figure2a)

∆gm +∆gm+1 −∆gn (Figure2b)

∆gm (Figure2c)

∆gm+1 (Figure2d)

(7)

The assignment process in this paper is driven by the target’s
revisit cycle, where new tasks are inserted into the satellite’s original
task sequence during each cycle. The large scale of the constellation
usually offers multiple task options. A key factor in task selection
is the duration of attitude maneuvers, as varying maneuver angles
lead to different maneuver times. Minimizing these maneuvers is
crucial for efficient task execution. Four situations will be generated
caused by the task’s different insert positions, leading to different
maneuvering times as shown in Function(7). ∆gm is the required
maneuvering angle from the previous task to the current inserted
task, and ∆gm+1 is the transfer time from the current inserted task
to next task. When the newly inserted task is on the maneuver
path of the original sequence, the execution impact on the satellite
maneuver is minimized, as shown in Figure(2a). Otherwise, As shown
in Figure(2b), when the inserted task is out of the maneuver path, the
satellite needs more attitude maneuvers to complete the observation,
and ∆gn is the time required for the original maneuver. Where the
inserted task is at the front or end of the task list, as shown in
Figure(2c) and Figure(2d), and the transfer time required is ∆gm and
∆gm+1.

According to the allocation rules, we can calculate the probability of
assignment of the corresponding task as follows:

p=

3∑
i=1

pari ∗ vali (8)

Where vali represent the weight of each assignment rule. TDMO is
designed to find appropriate allocation weights within the revisit period-
driven allocation cycle. Thus, an initial population of potential solutions
is generated. We set the chromosome to the weight of each assignment
rule as shown in Function(8).

The assignment weights are vary from 0 to 1. In the scheduling
process, we divide the scheduling horizon into multiple period based
on the revisit time. The assignment parameters for each period are
represented by the corresponding gene fragment Tn. Where T represents
the update cycle of assignment parameters. Allocation parameters can
be changed during the scheduling horizon by setting update cycles
based on the revisit time, making the scheduling process more flexible.
When the number of update cycles increases, the degree of flexibility
in the allocation process increases. However, the chromosome length
also becomes longer and the difficulty of the solution increases. How to
effectively trade-off to find out the appropriate update cycle is also one of
the focuses of this study.

Task scheme generate

After the task allocation process, the revisit task for each target would
be assigned to satellites and generate the allocation scheme. As shown in
Figure(1c), we perform a constraint checking process to ensure that there
are no conflicts between tasks in the scheme.

For each satellite in the scheduling scenario, sort all tasks by the
start time, then conduct the constraint check until we arrange all the
tasks in the scheduling scenario. We conduct the task at the earliest
non-conflicting moment within the VTW. When the current task fails
to execute, we would perform constraint checking for the next task.
After completing the constrain checking process, the scheduling result
is output.

Each solution is then evaluated based on the objective function1,
2,3 and 4. The individuals in the population are sorted using non-
dominant sorting to ensure Pareto efficiency and crowding distances are
calculated to maintain diversity. Top-ranked individuals are selected for
reproduction through genetic operations. Simulated Binary Crossover
and polynomial mutation are used in genetic algorithms to generate new
offspring solutions from two parent solutions. In TDMO, assignment
parameters from the same update cycle are involved in these operators.
The offspring are then evaluated, and the combined population of parents
and offspring is assessed to select the best individuals. This iterative
process continues until the maximum number of generations is reached,
resulting in the optimal task scheme.

Results: The seed satellites are placed in a circular orbit at an altitude
of 650 km with an inclination of 80 degrees. The chosen constellation
configuration is 100/25/8, and the satellite maneuver rate is set to 2
degrees per second. We developed a wildfire target database with three
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Fig. 2. Transition time of different task.

Fig. 3. Iteration process of the TDMO.

models: global distribution during non-peak season (50 targets), global
distribution during peak season (200 targets), and regional distribution
(50 targets). To ensure better observational continuity, the revisit time
for wildfire targets is set to 30 minutes. The scheduling horizon is one
day, with each target requiring at least 48 observations. The update cycle
frequency determines how often allocation parameters are updated. For
example, with an update cycle of 2, updates occur twice daily. The
chromosome length is six, representing two cycles: T1 and T2. Allocation
parameters in T1 cover the period from 0-12 hours, while those in T2
cover 12-24 hours.

Simulations Results and Analysis

According to the chromosome design methodology mentioned in
Section , we can set different update cycles for the allocation parameters
to increase flexibility in the allocation process. The sequence of update
cycles is chosen to be a common divisor of 48 (the number of target
revisits). Generational Distance (GD) is used to assess the TDMO
method. GD measures the distance between the obtained solutions and
the true Pareto front, reflecting the set of optimal solutions for the given
problem. Obtaining a true Pareto front is challenging in the revisit task
scheduling problem for larger-scale EOSCs. Therefore, we use initial
populations to estimate the evaluation of TDMO. A larger value of GD
indicates better convergence to the Pareto-optimal front.

Scenario 1:Task scheduling on the regional distribute targets

In scheduling scenarios for regional distribute targets, the iteration
process of the scheduling is shown in Figure(3a). The horizontal axis of
Figure(3a) indicates the number of iterations of TDMO, and the vertical
axis represents the GD. As shown in the Figure(3a), the rewards increase
along with the increment of the iteration process and gradually converge
to a fixed value, indicating that TDMO effectively optimizes regionally
distributed wildfire targets. The change in the update cycle(UC) from 1
(UC1) to 48 (UC48) for the allocation parameters significantly impacts
the iteration results. Initially, as the update cycle increases, the maximum
GD (MAXGD) value also increases, demonstrating the effectiveness of
more frequent assignment parameter updates in the scheduling of revisit
tasks. However, as the number of parameter updates continues to rise,
the value of MAXGD starts to decrease. This occurs because the length
of the chromosome increases with the number of updates, leading to a
dramatic expansion of the solution space, which complicates the search
process and results in poorer optimization.

Scenario 2:Task scheduling on the 50 global distribute targets

As seen in Figure (3b), similar to the locally distributed target scenario,
the MAXGD is larger at intermediate UC. The convergence values of the

iterations are generally higher than those for locally distributed targets,
suggesting that the algorithm achieves better results and offers more
optimization space when the target is globally distributed.

Scenario 3:Task scheduling on the 200 global distribute targets

Figure (3c) shows that GD values rise quickly and converge rapidly,
demonstrating the algorithm’s effectiveness in optimizing scenarios with
a large number of targets. The MAXGD occurs at medium UC and
is significantly higher than in scenarios with fewer targets. As the
number of targets increases, the solution space expands dramatically,
allowing TDMO to search for better solutions. The increase in GD values
highlights the algorithm’s ability to find optimal solutions in a larger
solution space.

Table 1: Comparison of results for each objective.
Algorithm NSGA-II TDMO
Scenario 1 2 3 1 2 3
MAXGD 0.024 0.74 1.61 0.035 0.96 1.92
ntar 50 50 200 50 50 200
ntask 3610 3616 14701 3281 3046 11846
Swk 5.58 6.77 39.14 4.93 5.99 34.63
σsat 0.026 0.032 0.12 0.022 0.025 0.067

Comparison Simulation

Table (1) lists the optimal scheduling results for NSGA-II and
TDMO for different objectives (Obj1 Obj4 as defined in Section 2).
Compared to NSGA-II, TDMO significantly optimizes the objectives and
maximum generational distance (MAXGD) after iterative optimization
with an appropriate number of parameter updates. In the GLOBAL200
scenario, TDMO reduces the workload by 20%, significantly enhancing
observation efficiency while meeting revisit requirements. Additionally,
there is a noticeable improvement in task distribution uniformity across
all three scenarios. This demonstrates TDMO’s effectiveness in selecting
appropriate allocation parameters for flexible scheduling and achieving
desired results.

Conclusion: In this study, we designed a revisit tasks scheduling method
for the large EOSC based on multi-objective optimization. TDMO
is proposed to optimize the allocation parameters, using a periodic
update design for the allocation process. This method is effective in
different scheduling scenarios and can efficiently optimize the allocation
parameters, leading to better scheduling results. After the optimization,
the EOSC task planners can select the appropriate combination of
allocation parameters to schedule for the corresponding objectives.
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