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Abstract

Positioning of underwater robots in congested and enclosed spaces remains unsolved for field op-
erations. Well existing field ready systems are generally more suited to use in to use in large, open
marine environments. In enclosed and congested environments, which are common in industrial
settings, existing systems suffer from a mixture of issues, including: poor coverage, reliance on
added infrastructure and the need for feature rich environments. Accurate and readily deployable
positioning is a prerequisite for performing repeatable autonomous missions and therefore, until
now, there has been a technological bottleneck in such environments. The Collaborative Aquatic
Positioning system presented in this paper uses a mixture of collaborative robotics and sensor fusion
to solve the problem. The proposed positioning system is deployed in a large water tank and re-
peatable autonomous missions are performed using the system’s position measurement for real-time
feedback. Experimental results show that the system can achieve a Euclidean distance Root Mean
Square Error (RMSE) of 70 mm while operating in real-time. The system enables almost complete
coverage of the body of water in large pools without requiring fixed infrastructure, lengthy calibra-
tion, or feature rich environments. The Collaborative Aquatic Positioning system builds upon recent
advances in mobile robot sensing and a recently developed leader follower control system to pro-
vide a step-change in positioning capability for real-world, high-precision autonomous underwater
navigation.

1 INTRODUCTION

Over the last decade, the field of underwater robotics has grown substantially. Today, the deployment of Remotely
Operated Vehicles (ROVs) is both safe and routine, extending beyond offshore industries (Reach Robotics, 2023;
Smith Jr et al., 2021) to include operations in spatially restricted aquatic environments. Presently, the absence of an
adequate positioning system represents a significant technological bottleneck, hindering the introduction of higher
levels of autonomy in the field use of underwater robots in industrial applications.

Thus far there has not been an underwater positioning system available, with sufficient accuracy, scalability and real
world viability, to facilitate the use of autonomous robotics in typical industrial underwater settings. The goal of this
ongoing research is to provide an underwater positioning system that can function in highly physically constrained
environments (Negahdaripour and Firoozfam, 2006; Ayoola, 2019) with sufficient accuracy to facilitate repeatable
and reliable autonomous robotic missions in real-world scenarios (FIS 360, 2021; Karlsen et al., 2021). To have great-
est impact in real-world applications, the positioning system should; not require the addition of fixed infrastructure,
such as cameras; it should cover large areas with minimal blind spots; and it should provide positional errors (Eu-
clidean distance Root Mean Square Error, RMSE) less than approximately 100 mm, to enable navigation in cluttered
environments.



1.1 Highly constrained underwater environments

There are numerous categories of highly physically constrained underwater environments that must be accessed on a
regular basis for purposes such as inspection, maintenance, repair, or decommissioning. These environments are char-
acterized by limited spatial conditions, which may include confinement by walls, narrow passageways, or areas that are
densely populated with obstacles. Examples of such environments include nuclear fuel storage pools (Griffiths et al.,
2016), liquid storage facilities (Duecker et al., 2019), flooded mines (Álvarez-Tuñón et al., 2018), ship hulls (Song and
Cui, 2020), pipelines (Zhao et al., 2022), and off-shore wind turbine foundation tripods (Barari et al., 2021). In many
cases, regular inspection of these environments is a regulatory necessity. For example, the Harmonized System of
Survey and Certification (HSSC) Guidelines, Resolution A.1140 (International Maritime Organization, 2015), specify
that the outside of a passenger ship’s hull should be carried out twice in a five year period.

Traditionally, accessing highly constrained underwater environments requires human divers. However, working in
these environments can be high-risk, tedious and expensive (Lin and Dong, 2023). This reality, alongside technological
advancements and the need to reduce costs, has led to increased use of robotic vehicles to access such areas (Christ
and Wernli Sr, 2013; FitzGerald et al., 2022; Brantner and Khatib, 2021). In addition, small robots can be used to
operate in environments where human access would not be possible due to physical constraints, for example, access
through pipes or openings that are too narrow for humans to access (Fackler, 2017).

1.2 Positioning for underwater robots

Typically robotic underwater vehicles are split into two categories, Remote Operated Vehicles (ROVs) and Au-
tonomous Underwater Vehicles (AUVs). Whilst ROVs are remotely driven by a human operator, AUVs are au-
tonomous vehicles that receive high-level commands from the operator, such as a list of waypoints that the robot
must navigate to. AUVs typically necessitate a positioning system to facilitate autonomous navigation. Conversely,
remotely operated vehicles (ROVs) do not inherently require such systems for operation; however, incorporating a
positioning system can enhance their performance.

For remotely driven ROV missions, there are two main benefits associated with the provision of accurate positioning.
First, the operator has an additional source of information, which can aid navigation. This assists the operator in driving
through the environment and not losing track of the robot’s location, which is a common issue (Loebis et al., 2004;
Shabani et al., 2015; Li et al., 2021). Second, an accurate positioning system allows any data from the sensor payload
to be geo-spatially located (geo-tagged), meaning that sensor readings can be repeatably mapped in the underwater
environment and presented in human readable formats, such as a heat map format.

For AUVs, an accurate positioning system is essential (Ferreira et al., 2010; Palomeras et al., 2019; Hegrenas et al.,
2008), with effective autonomous navigation relying on regular, accurate position updates. There are several well
documented benefits to performing fully autonomous unmanned robotic missions, where the operator has minimal
input. These include cost reduction, improved repeatability, increased survey frequency. Aside from fully autonomous
systems, lower levels of autonomy, such as position and velocity control, which can provide smooth and accurate
navigation in the presence of disturbances, also require accurate positioning information.

1.3 Accuracy requirements in constrained environments

Navigating underwater vehicles through highly constrained physical environments is challenging and requires precise
movement. This is in contrast to operating in open oceans where robots generally move in free space and therefore
the precision and accuracy requirements can be relaxed. The accuracy and precision of a robot’s positioning and
pose estimation is a limiting factor affecting the performance of any navigational control system, since a robot can’t
navigate with higher accuracy than its state estimation system.

While the accuracy requirements of a positioning system will vary depending on the mission and environment, it is
useful to have quantitative targets, even if they can only be approximate. To gauge the accuracy requirements for



navigation, a representative example of a small underwater vehicle navigating through an opening that is 500 mm
wide is considered. Assuming that the robot is 340 mm wide (Blue Robotics Inc, 2024), this would leave 80 mm either
side to account for both position and control errors. In a recent challenge statement from the UK nuclear industry (FIS
360, 2021), an accuracy requirement of 50 mm was specified for revisiting the same position in a small, enclosed
storage pond of 7 m x 7 m. Therefore, it is concluded that positioning accuracy in the 0-100 mm range would be
acceptable for many common missions in constrained underwater environments. The accuracy is defined here as the
RMSE euclidean distance between the estimated position and the actual position.

1.4 Infrastructure and coverage

To be useful in practical situations, a confined space positioning system should require minimal infrastructure and be
capable of good coverage of the environment. Fixing infrastructure, such as installing underwater cameras, beacons
or markers, in the environment is time consuming, expensive and generally requires lengthy calibration. Moreover,
installing infrastructure is often not feasible in environments where access is highly restricted due to safety concerns.
In such scenarios, deploying infrastructure becomes impractical. A pertinent example is in nuclear fuel ponds, where
safety protocols severely limit the introduction of external equipment. It is also important that the system can operate
over a high proportion of the environment, not suffer from blind spots, nor be confined to a local area. Systems that
rely on fixed infrastructure often suffer from such problems because the fixed equipment has restricted field of view
and range.

2 REVIEW OF UNDERWATER LOCALISATION SYSTEMS

The reason that positioning robots underwater remains particularly challenging relates mostly to the properties of wa-
ter itself. Technologies that are commonly used in air, such as GPS and LiDAR, rely on electromagnetic frequency
bands that are highly attenuated by water, rendering them largely unusable. There are some exceptions to this. For
example, there is a relative reduction in attenuation of visible light frequencies (380-750 nm) and as a consequence,
in aquatic environments, cameras are the most successfully used sensor that relies on propagation of electromagnetic
waves. Aquatic applications that require information to be transferred over long distances typically rely on the use of
acoustic signals, which are not significantly attenuated in water. However, acoustic signals are subject to relatively
slow propagation, low frequency, and are impacted by multipath issues (Stojanovic and Preisig, 2009; Singer et al.,
2009), these factors limit their accuracy and refresh rate when used for underwater positioning. In highly constrained
environments, multipath problems are exacerbated, rendering many acoustic positioning systems unsuitable (Horri,
2020), particularly those that operate in lower frequency bands within which signals suffer less attenuation and there-
fore echoes dissipate slowly.

2.1 Acoustic positioning

The most widely used underwater positioning technology is based on acoustic triangulation and there are several
standard system configurations available for its use in marine field robotics. The main difference between the different
setups is the distance between acoustic transponders (termed the baseline) and whether transponders are mounted to
the seabed or to a surface ship. For use in highly constrained environments, ultra short baseline (USBL) systems
would be the most appropriate as they are designed for lower ranges and do not require transponders to be fixed to
the infrastructure. However, typical accuracy of USBL systems is relatively low, 3-5% of the range (Sonardyne, 2023;
ADVANCED NAVIGATION, 2022; Sonardyne, 2022), which equates to up to 0.5 m over 10 m, and so is insufficient
for the previously mentioned applications, with the additional problem that refresh rates will be relatively slow.

Sonar based simultaneous localisation and mapping (SLAM) is another acoustic technique that is widely reported in
the literature (Suresh et al., 2020; McConnell et al., 2022; Ling et al., 2023; Li et al., 2018; Westman et al., 2018;
Teixeira et al., 2019). Sonar SLAM in an underwater environment is analogous to LiDAR based SLAM in a terrestrial
environment (Oliveira et al., 2021). The technique has been reported to achieve positioning errors of 0.2 m over a



2.5 km trajectory, when used in combination with both IMU and DVL sensors (Ozog et al., 2016). Although this is an
improvement it is still insufficient. More importantly that the quoted figures is the fact that the systems are unproven
for applications in confined industrial aquatic environments.

2.2 Vision based positioning

The most accurate underwater positioning systems that are available use several cameras, fixed to the perimeter of
an environment, to track an array of markers that are fixed to the robot. The commercial underwater motion capture
system produced by Qualisys (Qualisys, 2022), for example, achieves sub-centimeter accuracy, low latency and fast
refresh rates of 100 Hz. Despite this impressive performance, such systems are typically more suited to lab settings,
as they have significant setup, calibration and infrastructure requirements, are highly sensitive to water clarity, as well
as having limited volume coverage. Duecker et al. (Duecker et al., 2020) inverted this principle, using a single camera
and many marker objects. They placed an array of 63 artificial markers around the perimeter of a tank and used a
vehicle mounted camera, combined with AprilTag tracking, to estimate the pose of the camera, which is fixed on an
underwater robot. Although cheaper and able to cover a greater proportion of the environment than a system with wall
mounted cameras, placing and maintaining many markers at known locations in the environment is not a practicable
solution.

Vision-based SLAM using onboard cameras is also a common solution, with at least one commercial product (Vaarst,
2023) and several examples in the literature (Zhou et al., 2022; Campos et al., 2021; Wang et al., 2021; Zhu et al.,
2023). Vision-based SLAM depends heavily on recognizing and tracking salient environmental features and reliance
on such features is a problem that has been reported when using aerial vehicles in GPS denied environments (Weiss
et al., 2011; Chowdhary et al., 2013). As discussed above, vision penetration is reduced underwater, particularly in
turbid waters, and causes image sharpness and visibility range to be reduced, which introduces significant challenges
when using vision-based SLAM in aquatic applications. Studies have confirmed that the performance of vision-based
SLAM used underwater is inferior to that in air due to the low contrast of underwater images. In most cases, features
are difficult to extract and are highly dependent on environmental conditions (Zhao et al., 2020).

2.3 Contribution

In this work, a first-of-a-kind collaborative aquatic positioning (CAP) system, which aims to satisfy the requirements
defined earlier, is proposed and evaluated experimentally in water tank that is a direct copy of a typical industrial liquid
storage tank (see MOVIE 1). The fundamental concept behind the CAP system is inspired by the mother-ship model,
used in open oceans, where a surface vehicle with it’s own sensor suite is used to help localise a subsurface vehicle.
The key difference being that the collaborating surface vehicle is highly mobile and able to move autonomously,
staying above the subsurface vehicle. By combining information from sensors that are fixed to both the on the surface
and underwater vehicles, and tracking a fiducial marker onboard the underwater vehicle, the position of the underwater
vehicle can be determined.

Using a collaborative autonomous surface robot in this way has several benefits. First, the majority of the translation
from the origin coordinate system to the underwater vehicle frame is performed in air using an accurate LiDAR based
approach; only the direct translation down to the underwater vehicle is performed in water. This means that camera
based underwater localisation, which is the fastest and most accurate underwater technique, is appropriate due to
the relatively short distances involved. Second, coverage of the environment is almost complete because the camera
follows the underwater vehicle and actively keeps it in the field of view. Third, the system does not require any fixed
infrastructure, and calibration is as simple as choosing the location of the reference coordinate system origin on the
water surface.

Two variants of the CAP system are proposed in this paper: CAP-CPnP, which uses camera based object tracking
and a Perspective-n-Point (PnP) algorithm; and CAP-CD, which uses a novel formulation to combine camera based
object tracking and a pressure sensor on the underwater vehicle. Both variants are evaluated experimentally during an
autonomous underwater mission, with position data from the CAP system being produced in real-time and fed back to



the underwater vehicle (in real-time) to enable an autonomous (waypoint guided) mission.

3 MATERIALS AND METHODS

3.1 Overview

The two variants of the CAP system, namely CAP-CPnP and CAP-CD, share several components such as the estima-
tion of the surface robot’s 6-DOF pose and use of the AprilTag to identify camera pixels that represent the corners of
a fiducial marker. The key difference between the two systems is that CAP-CD does not require multiple pixels to be
identified at known locations to enable use of a PnP algorithm (Lepetit et al., 2009). Instead, only a single pixel needs
to be identified, which broadens the horizon of image processing techniques that can be applied. However, removing
the PnP solver means that there is no longer a serial transform chain. Therefore additional sensing as well as a new
mathematical formulation are required to enable full and direct calculation of the underwater robot’s pose.

3.2 Hardware architecture - robotic platforms and sensors

The hardware used in this study represents one possible physical incarnation of the positioning systems. As would be
expected, the underlying mathematical formulations are agnostic the choice of sensing methods and robots and there
are several possible configurations. However, detail has been given below to facilitate understanding of the systems.

The aquatic surface robot used in the proposed positioning system is MallARD (sMall Autonomous Robotic Duck)
platform (Groves et al., 2019), which is shown in Figure 1. The dual pontoon configuration of MallARD ensures
stability and also creates space at the robot’s centre for sensor payloads. To facilitate locomotion, MallARD is equipped
with four bidirectional Blue Robotics T200 thrusters. The thrusters are in a 45-degree configuration relative to the x
or y axis, which allows vectoring in the robot’s x and y axes and rotation about the robot’s z-axis. MallARD has an
on-board computer and is Robotic Operating System (ROS) (Open Robotics, 2024) enabled. Motion commands are
sent from ROS over a serial connection to a control unit (Pixhawk), which generates pulse-width modulation (PWM)
signals that are sent to the electronic speed controllers (ESCs). The ESCs in turn provide a phased output to the four
brushless motor powered thrusters.

For use in the CAP system, MallARD was modified to include a downward facing low light HD camera and an inertial
measurement unit (IMU). The modified robot layout and dimensions are depicted in Figure 1 A and B respectively,
while Figure 2 shows the electrical connections of the full system. The camera was included to provide the surface
robot with a clear video stream directly beneath the robot to enable tracking of the underwater robot. This camera is
a low-light HD USB Camera, which was mounted in a waterproof enclosure in the robot’s central payload area. The
IMU was added to enable full pose estimation of MallARD relative to the fixed environment.

The underwater robot utilized in this study is a commercially available BlueROV2, which has been customised and
made to run ROS. A fiducial marker, constructed using laser-cut acrylic sheet material, is fixed on top of the BlueROV2,
as depicted in Figure 3. This marker is used to track the underwater robot in the field of view of the downward facing
camera fixed to MallARD. It is important to note that Additionally, a pressure sensor, positioned at the BlueROV2’s
rear and illustrated in Figure 3, has been integrated. This calibrated sensor provides accurate depth measurements (See
Supplementary Material, Section 2).

3.3 Mathematical background - Homogeneous transforms

Given p1
X that represents a point labelled X ∈ R3 in coordinate frame F1, the coordinates of the same point can be

represented in a different coordinate frame F0, given the transform from F0 to F1. This coordinate frame transform
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can be expressed using a 4×4 homogeneous transform matrix H0
1, which represents the pose of F1 with respect to F0[

p0
X

1

]
= H0

1

[
p1
X

1

]
, (1)

where

H0
1 =

[
R0

1 p0
1

0 1

]
∈ SE(3), (2)

and p0
1 ∈ R3 is the translation from the origin of F0 to the origin of F1, R0

1 ∈ SO(3) is the rotation matrix from F0

to F1. Homogeneous transforms can be formed into serial chains. For instance, if there is a third coordinate frame F2

and the transform from F1 to F2 is given by H1
2, the transform from F0 to F2 can be obtained by right multiplication

of the transform chain, in order from start frame to end frame:

H0
2 = H0

1H
1
2. (3)



3.4 Coordinate frames

The coordinate systems involved in the design of each part of the CAP system are shown in Figure 4A. The full
positioning system is composed of the following coordinate frames: world frame FW , MallARD baselink frame FB ,
IMU frame FI , camera frame (monocular) FC and marker frame FM . The world frame (FW ) origin is assigned to
a corner of the testing tank. MallARD baselink (FB) is the geometric centre of MallARD. The IMU frame (FI ) is
attached to the IMU and has a fixed transform from FB . The origin of the camera frame (FC) is located at the optical
centre of the camera lens and also has a fixed transform from FB .2 
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3.5 CAP-CPnP formulation

The CAP system aims to determine pW
M : the position of the origin of the marker frame FM in the world frame FW .

In the CAP-CPnP formulation, all elements of the serial transform chain can be determined independently; therefore,
using Equations (1) and (3), pW

M can be calculated directly:[
pW
M

1

]
= HW

B HB
C

[
pW
M

1

]
. (4)

The terms on the right hand side of Equation (4) can be determined as follows. From Equation (2), HW
B is composed

of RW
B and pW

B . RW
B can be calculated using data from the IMU and 2D SLAM system on the surface vehicle, as de-

tailed in Section 3.9. pW
B can be constructed from the x and y components of the 2D SLAM output (Section 3.8), while

the z component is assumed to be a static value that represents the offset between the world frame and MallARD’s
body frame. Further detail regarding the method of obtaining RW

B and pW
B is given in the Section 3.8 and Supplemen-

tary Materials, Section 1.2 respectively. HB
C is a measured static transformation from the ASV body frame FB to the

camera frame FC . pC
M is the position of the marker frame (FM ) origin in the camera frame (FC) and is calculated



using a fiducial marker tracking technique, which is a two step process. First, the camera image is processed using
AprilTag to detect the four pixel locations that relate to the four corners of a fiducial marker in the camera’s image.
Second, the four pixel locations, together with the marker’s dimensions and the camera’s intrinsic matrix are used
to determine the 6 DOF pose of the fiducial marker in the camera frame, from which pC

M can be extracted. This is
a standard problem known as Perspective-n-Point (PnP) and has several available solutions, for example Direct Lin-
ear Transformation (Hartley and Zisserman, 2003) and Efficient PnP (Lepetit et al., 2009). Further detail regarding
fiducial tracking and PnP usage is provided in the Supplementary Materials, Section 2.

Camera tracking systems have inherent noise due to their derivation from (necessarily) pixelated camera images. Noise
is exacerbated when 3-DOF translations are derived using Perspective-n-Point (PnP) methods (Lensgraf et al., 2021).
This is primarily due to the low sensitivity of PnP solutions to depth variations (zCM ). Changes in depth cause relatively
small changes to the image and, in turn, have a lesser effect on changing the pixels that are identified as corners of
objects, causing low relative sensitivity and ambiguity. Noise and ambiguity in zCM mostly affects zWM , due to the fact
that their associated axes are generally well aligned, however, noise in zCM also translates onto xWM and yWM when the
ASV pitches and rolls. To overcome the shortcomings of CAP-CPnP, CAP-CD is proposed, which does not require
the use of a PnP solver and, instead, incorporates a depth sensor onboard the underwater robot.

3.6 CAP-CD formulation

The CAP-CD formulation does not use a PnP solver (or equivalent) and, therefore, pC
M is undefined, breaking the

transform chain. However, with the inclusion of a pressure sensor on the underwater robot, that can be calibrated to
measure water depth, it is possible to directly calculate pW

M .

Figure 4B gives a graphical representation of the method. Consider a Plücker line that passes through the origins of FC

and FM , and a horizontal plane defined by the depth sensor measurement zWM . By finding the intersection between the
Plücker line and the horizontal plane, pW

M can be calculated.

The Plücker line is defined by two points in the world frame FW . The first point pW
C is the origin of FC which can be

found using [
pW
C

1

]
= HW

B

[
pB
C

1

]
. (5)

Since the origin of FM is unknown, another point on the line must be found for the line can be defined. To find this
second point, AprilTag is used to identify the camera pixel locations that represent the corners of the fiducial marker;
these are averaged to give the pixel location of the centre of the marker: up and vp. The camera’s intrinsic matrix is
then used to identify the components xCP and yCP of a projected point pC

P . According to the definition of the intrinsic
matrix, zCP = 1 for all cases. Therefore pC

P can be identified as follows:

pC
P =

 xCP
yCP
1

 =

 fx 0 cx
0 fy cy
0 0 1

−1  ucentre
vcentre
1

 , (6)

where the 3 × 3 matrix is the camera’s intrinsic matrix. pC
P lies on the the Plücker line that passes through the origin

of FC and FM . However, for the Plücker line to be defined in FW the point must be transformed into FW , the world
frame: [

pW
P

1

]
= HW

B HB
C

[
pC
P

1

]
. (7)

Now, given pW
C and pW

P the Plücker line can be defined in the world frame. In general, the equation of a line with
direction vector l = [l,m, n]⊤ that passes through the point [x1, y1, z1]

⊤ is given by the formula

x− x1
l

=
y − y1
m

=
z − z1
n

= k, (8)



where k ranges over all real numbers and represents the position on the line. By defining

[l,m, n]⊤ =
[
xWC − xWP , yWC − yWP , zWC − zWP

]⊤
(9)

the Plücker line can be expressed as:
x = xWP +

(
xWC − xWP

)
k, (10)

y = yWP +
(
yWC − yWP

)
k, (11)

z = zWP +
(
zWC − zWP

)
k. (12)

Since zWM can be found directly from the calibrated pressure sensor measurement, the value required for k which
effectively identifies the intersection between the horisontal plane given by zWM and the Plücker can be computed by:

k =
−zWM − zWP
zWC − zWP

. (13)

Therefore, the tag’s unknown coordinates xWM and yWM can be found by substituting k back into Equation (10) and (11).

3.7 Autonomous following

For the CAP system to function, the marker on the underwater robot must be within the field of view of the surface
vehicle’s downward facing camera. To achieve this a range of control techniques could be applied and in this work
visual servoing was implemented (Chaumette, 2004; Yao et al., 2023).

Initially, four target feature points that represent the desired position of the corners of the fiducial marker are defined
on the projected image plane. The marker tracking system (AprilTag) then continuously detects these four points and
compares them with the corresponding target projection points. The aim of the visual servoing system is to minimize
the difference between the desired and tracked positions. This difference is translated into how the surface robot should
move to ensure that the detected points match (or fall within an acceptable range of deviation) the target feature points,
thereby enabling the surface robot to automatically follow the underwater robot.

3.8 MallARD’s 2D SLAM system

MallARD is equipped with a waterproof 2D LiDAR, enabling planar localisation relative to the pool walls. Because
the 2D LiDAR operates in a plane which is parallel to the water surface, the SLAM system provides positions xWB and
yWB as well as yaw angle ψW

B on that plane. Because in this application there is no reliable source of odometry, the
choice of 2D slam algorithms is limited. In the current work, a customised version of Hector mapping is used as the
SLAM framework as this does not require any odometry (Kohlbrecher et al., 2011b). The customisations made allow
the map to be locked, preventing corruption in longer trials, and allows the position and rotation to be output relative to
a fixed location in the pool. By default the SLAM output is with reference to the start location, which is not practical
or repeatable.

Upon immersion and activation in the aquatic environment, MallARD transmits LiDAR scans to the SLAM software.
To build a 2D map of the pool’s walls, MallARD is manually navigated around the pool using a joystick. Once
the mapping phase reaches completion, the map is fixed and MallARD’s autonomous following mode is initiated.
During this phase, the primary function of the SLAM algorithm is localisation, given that the spatial map undergoes
no changes, as depicted in Figure 5(A).

3.9 MallARD’s rotation relative to the world frame RW
B

As MallARD navigates through water, it undergoes roll and pitch due to resultant hydrodynamic forces and small
waves on the water surface (Figure 5 B(i) and Bii). For both CAP-CD and CAP-CPnP, it is necessary to know
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Figure 5: Simulated scenarios to aid description of self-localisation and tilting analysis of the surface robot: A(i):
MallARD in a simulated aquatic environment, and A(ii):The SLAM system visualisation including the multi coloured
dots of the laser scan, the black lines of the map and a body frame pose estimate. B(i) and B(ii): Tilting of the surface
robot due to surface waves, and B(iii): Schematic diagram of Extended Kalman Filter inputs and outputs.

MallARD’s body frame rotation relative to the world coordinate system RW
B . For mathematical convenience RW

B is
calculated using Euler angles in the Z-Y-X sequence and then converted to a rotation matrix. While the issue of gimbal
lock is a known problem when using Euler angles, it is unlikely to occur in this case because rotations about the y-axis
generally remain within approximately 10 degrees of zero.

To calculate RW
B in the Z-Y-X Euler angle form, the rotation about z-axis is decoupled from the rotations about y-

axis and X-axis . Although MallARD’s IMU has a built in 3-axis compass, the compass-provided measurements are
unreliable due to the magnetic fields generated by metallic structures and MallARD’s own electronic equipment and
motors. Therefore, the magnetometer cannot provide a lock for the yaw measurement (rotation about Z-axis in the
Euler sequence). However, yaw can be acquired through LiDAR-based SLAM and this is used as the z-axis component
of the sequence. This approach is valid because z is the first rotation in the sequence and is therefore about the z-axis
of FW . MallARD’s roll and pitch (y-axis and x-axis rotations in the Euler sequence) must now be computed relative
to the stabilised body frame (Kohlbrecher et al., 2011a), which is a version of the body frame without any roll or pitch.

The tilting EKF (Welch and Bishop, 1995) is used to find the second two rotations in the sequence. As shown in
Figure 5 B(iii) the EKF takes two vector inputs, which are 3-axis angular rate ω = [ωx, ωy, ωz]

⊤ measured by the
gyroscope and 3-axis acceleration a = [ax, ay, az]

⊤ measured by the accelerometer, and outputs the rotations, which
are pitch(θ) and roll(ϕ). In this research, the motion of the USV does not exhibit prolonged substantial accelerations
(other than gravitational acceleration) for an extended period of time. Therefore, it is assumed that the acceleration
vector is identical to the gravity vector. Using the full Euler angle Z-Y-X sequence RW

B can be transformed to a
rotation matrix using the following equation:



RW
B =

 cψcθ cψsθsϕ− sψcϕ cψsθcϕ+ sψsϕ
sψcθ sψsθsϕ+ cψcϕ sψsθcϕ− cψsϕ
−sθ cθsϕ cθcϕ

 (14)

4 RESULTS

4.1 Experiment setup

Figure 6: Experimental field and setup. A: Overview of the experimental tank. B: Qualisys system setup and effective
volume C: MallARD and BlueROV2 deployed in the experimental pond. BlueROV2 is mounted with pearl marker for
Qualisys system tracking.

The CAP system was evaluated using data collected in the 4.8×3.6×2.0 m (length, width, depth) indoor test tank
shown in Figure 6A. The positioning accuracy of the system was validated using a high-accuracy, 6 camera Qualisys
Miqus M5 underwater motion tracking system (Qualisys, 2024). The submerged Qualisys cameras, as shown in
Figure 6A, were fixed to the walls of the tank. Due to field of view limitations, the Qualisys system could not cover
the entire tank’s volume, and as a consequence the experiments were conducted in a smaller region of the tank, as
illustrated in Figure 6B. Qualisys tracking markers were placed on the BlueROV2 and on a customised marker plate
that was used to allow the Qualisys object frame to be accurately located on to the BlueROV2. Figure 6C shows
the BlueROV2 with Qualisys pearl markers attached. When calibrated, the accuracy of the Qualisys system over the
effective volume was 1 mm with regard to position and 0.1◦ for rotation (Qualisys, 2024) (Qualisys calibration is
detailed in Supplementary Materials, Section 5).

BlueROV2, MallARD, and the basestation all utilize ROS, enabling real-time data sharing and synchronization to a



single clock, specifically the clock of the basestation. All sensor data was generated and processed in real-time and
recorded on the basestation. Real-time pose data from the Qualisys system were also bridged into the ROS system and
recorded on the basestation.

4.2 Experimental validation in the test tank

The two positioning systems described in Section 3 were evaluated in this work, namely CAP-CD and CAP-CPnP. To
evaluate the performance of CAP system, the underwater robot was programmed to move autonomously along three
pre-programmed trajectories. These trajectories were: square, random and lawnmower pattern. To comprehensively
assess the impact of depth variations on the system, the depth of the underwater robot was varied by up to 1 m as
it followed the pre-programmed trajectories. Concurrently, the surface robot (MallARD) autonomously followed the
underwater robot, ensuring that the fiducial marker, fixed on the underwater robot, remained within the field of view
of the downward-facing camera on the surface robot. The validation experiment collected three sets of data for each
of the square, random, and lawnmower patterns with relatively large depth variations (up to 1 m), with each dataset
lasting for 120 seconds. Furthermore, the datasets for each of the square, random, and lawnmower patterns, were
collected with minor depth fluctuations (up to approximately 0.3 m).

Figure 7A displays overlaid snapshots of the real-time positioning trajectory of the underwater robot over a duration of
21 seconds. Figure 7B shows the positioning performance of CAP-CD and CAP-CPnP, corresponding to the results in
Figure 7A. These overlaid snapshots and trajectories are presented for clarity and conciseness. Beyond the fixed-depth
square trajectory illustrated, the performance of CAP-CD and CAP-CPnP under various more complex trajectories
is detailed in Figure 9 and Table 1. Figures 8A(i), B(i), and C(i) illustrate the translation of the underwater robot in
the world-fixed frame, estimated using both CAP methods in comparison with the ground truth, for the X , Y , and
Z axes respectively. In Figure 8A(i) and A(ii), it is evident that the positioning error of CAP-CD increased during
changes in the underwater robot’s direction of motion, both in the X and y axes, presented as fluctuations within the
graphs. This phenomenon occurred because CAP-CD assumed the depth measured by the depth sensor was at the
centre of rotation of the underwater robot. However, the sensor was actually located towards the rear of the robot and
changed when the robot’s motion caused the robot to tilt. In contrast, the ground truth, which tracked the centre of the
robot, was minimally impacted by this tilt. The depth sensor, positioned at the BlueROV2’s rear, registered significant
depth alterations due to the BlueROV2’s inclination, which lead to observable positioning fluctuations along the X-Y
plane. Similarly, since the AprilTag was located towards the rear of the robot rather than at the centre, CAP-CPnP
experienced the same issue.

In terms of the positioning results from the x, y, and z axes, the Euclidian RMSE of CAP-CD was slightly lower than
that of CAP-CPnP, shown in 8A(ii)(iii), B(ii)(iii) and C(ii)(iii). The Euclidean RMSE of CAP-CD over the 120 s was
70.2 mm, while that of CAP-CPnP was slightly higher at 100.3 mm. Table 1 shows the full breakdown of the results
for each dataset. The results indicate that across a variety of trajectories, the accuracy of CAP-CD surpasses that of
CAP-CPnP in the x, y, and z axes, respectively. Consequently, the Euclidean RMSE of CAP-CD is lower than that
of CAP-CPnP. The Euclidean RMSE for CAP-CD is concentrated between 90 mm to 130 mm, with the highest value
reaching 123.4 mm.

To demonstrate consistency between the results from different experiments, results of the CAP system operating on
an underwater robot in square, lawnmower, and random patterns (accompanied by variations in depth) are shown in
the Figure 9. More details and plots of the results for each dataset can be found in Supplementary Materials, Section 3
and MOVIE 3, 4, 5 and 6.

4.3 CAP system in waters of varying turbidity

The accuracy of positioning in waters with varying levels of turbidity is an important metric for underwater positioning
systems. To address this, a further set of experiments were designed whereby a fiducial marker was laminated and
fixed in the middle of the underwater test volume, and the water’s turbidity altered by adding talcum powder. During
the experiments, the water’s turbidity was adjusted to 0.12 NTU (Nephelometric Turbidity Units), 2.58 NTU, and



Figure 7: Overview of CAP system during testing. A: Overlaid snapshots of CAP system; the trajectories of MallARD
and BlueROV2 are shown as the green and red path. B: 3D trajectory of BlueROV2 estimated by CAP-CD and
CAP-CPnP against ground truth overtime respectively. BlueROV2 and MallARD operating in autonomous mode. The
BlueROV2 is programmed to move in a specific trajectory. Meanwhile, the two robots of the CAP system operate in
a leader-follower configuration (BlueROV2 as leader and MallARD as follower).
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Figure 8: The positioning results of the CAP system from the X, Y, and Z axes. A(i), B(i) and C(i) The positioning
of BlueROV2 by CAP-CD and CAP-CPnP in comparison with the ground truth along the X, Y, and Z axes, respec-
tively. A(ii), B(ii) and C(ii) The error histograms of CAP-CD on the X, Y, and Z axes. A(iii), B(iii) and C(iii) The
error histograms of CAP-CPnP on the X, Y, and Z axes.
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Figure 9: The positioning results of the CAP system while the underwater robot moves in different patterns.
Figures A(i), B(i), and C(i) respectively show the trajectory plots of the CAP system positioning underwater robots
operating in square, lawnmower, and random patterns. Figures A(ii), B(ii), and C(ii) present the error histograms
of CAP-CD for Euclidean distance. Figures A(iii), B(iii), and C(iii) display the error histograms of CAP-CPnP for
Euclidean distance.



Table 1: Comparative performance of CAP-CD versus CAP-CPnP across various datasets and trajectory types.

 

Trajectory Dataset 
No. Method X RMSE (mm) Y RMSE (mm) Z RMSE (mm) 

 
Euclidean RMSE 

(mm) 

Square 
 

1 
CAP-CD 66.2 61.6 24.1 103.3 

CAP-CPnP 55.6 58.8 61.7 106.2 

2 
CAP-CD 67.7 49.1 63.0 99.3 

CAP-CPnP 76.9 45.3 82.2 102.4 

3 
CAP-CD 65.0 51.7 52.4 99.2 

CAP-CPnP 59.2 49.9 71.8 92.5 

Lawnmower 

4 
CAP-CD 55.2 76.9 29.0 98.7 

CAP-CPnP 76.9 83.2 65.8 106.7 

5 
CAP-CD 58.2 73.7 30.8 87.3 

CAP-CPnP 46.8 71.5 62.2 94.5 

6 
CAP-CD 56.5 68.5 36.0 85.5 

CAP-CPnP 45.5 65.2 62.0 92.1 

Random 

7 
CAP-CD 104.4 89.2 45.3 116.1 

CAP-CPnP 100.1 89.1 75.2 126.8 

8 
CAP-CD 80.4 88.6 48.3 117.7 

CAP-CPnP 74.9 85.2 68.5 122.7 

9 
CAP-CD 87.4 78.9 59.4 123.4 

CAP-CPnP 83.4 81.4 80.2 134.2 

3.74 NTU. The YSI ProDSS water quality meter(Van Walt, 2024) was used to measure turbidity and this probe was
calibrated using deionized water. At each turbidity level, three sets of experiments were conducted at different depths:
0.9 m, 1.4 m, and 1.9 m. Simultaneously, at each depth, the surface robot was programmed to move along three
trajectories: a square (with the surface robot performing a 90-degree turn at each corner of the square), a hexagon, and
a lawnmower pattern (see MOVIE 2). The outputs of the CAP system and all sensors were recorded throughout these
tests.

In these tests, the camera could clearly detect the AprilTag at turbidity levels ranging from 0.12 NTU to 2.58 NTU,
as shown in Figure 10. The ability to detect the underwater fiducial marker correlates to two factors: turbidity and
the distance between the camera and the target tag. The confidence in tag detection is quantified by the decision
margin. As might be expected, the decision margin demonstrates a negative correlation with both water turbidity and
the distance between camera and tag, as shown in Figure 10B(i), B(ii) and B(iii). As turbidity increased to 3.74 NTU,
a significant reduction in the decision margin was observed. With turbidity at 3.74 NTU and the distance set to 1.9
meters, the efficacy of tag detection diminished considerably, although there were sporadic instances of successful
detection under these circumstances.

5 DISCUSSION

The positioning of robots in constrained underwater environments introduces a range of challenges that are typically
not encountered in open marine environments. Perhaps the most significant of these is that in a constrained environ-
ment, an underwater robot may require far greater positional accuracy than would be required in a marine environment.
Whilst it is possible to design underwater positioning systems for environments where infrastructure, such as cameras
or markers, can be added, or where there are a rich set of features, this research has presented a collaborative system



Figure 10: CAP system in waters of varying turbidity.(A) In situations where an underwater AprilTag remains
stationary while the surface robot moves, and under varying depths as well as different turbidity levels of water, the
downward-facing camera’s recognition performance of the fiducial marker. B(i), B(ii) and B(iii) are the box plots of
the decision margins detected by fiducial detection under three different levels of turbidity.



that provides underwater positioning in confined or otherwise constrained underwater environments, without the need
for infrastructure, system calibration or the environment to be feature rich. This capability marks a significant step
towards enabling repeatable and reliable autonomous robotic missions in such challenging conditions. Comparative
analysis indicates that the system’s performance aligns well with the set objectives, offering a viable solution for the
precise navigation and positioning that is required for successful underwater explorations and tasks.

An important point to note regarding the differences between the two CAP formulations is that, in addition to improved
accuracy, the CAP-CD formulation is more flexible. The PnP element of the CAP-CPnP formulation relies on four
corners of a geometric tag of known dimensions being identified. This is somewhat limiting, in that a fiducial marker
tracking system must generally be employed. On the other hand, the CAP-CD system only requires a single point in
a projected plane. This means that the system is open for use with other tracking systems; for instance, those based
on deep learning, such as YOLO (Redmon et al., 2016) or fast RCNN (Girshick, 2015) which could track the robot
without the need for a fiducial marker. This would have the added benefit of not requiring the underwater vehicle to
be locked in roll and pitch, to maintain visibility of the fiducial marker.

5.1 Limitations of the study

A current limitation is that since the underwater portion of the proposed method is vision-based, it inherits some
common issues of optical positioning; for instance, ambient lighting and turbidity. The experimental setup for the
turbidity test, conducted within a water tank with a depth of 2.4 m limits the applicability of the results obtained. To
fully assess the capabilities of the CAP system in locating the robot, it would be necessary to conduct measurements
in environments that are deeper than the current experimental setup. However, the turbidity study demonstrates that
tag detection has a reasonable degree of tolerance to turbid water.

Although the use of the positioning system as feedback to enable autonomous underwater missions has confirmed that
the CAP system can operate successfully in real-time, this does not fully address the issue of temporal synchronization
among multiple sensors. Instead the current system relies on using the most recent update from each sensor.

The current system provides the Cartesian position of the underwater robot in 3-DOF. However, the system could be
expanded to cover 3-DOF rotation with relative ease by re-using components that were developed to determine the
surface vehicle’s 3-DOF rotation.

An important practical limitation of the setup is that it requires an open expanse of water surface above the underwater
environment to allow deployment of the surface vehicle. In addition, the current system, with only one collaborating
robot, can only operate to a depth where the fiducial marker can be tracked. Besides, as the self-localisation of surface
robots relies on LiDAR-based SLAM, it necessitates that the environment above the water surface contains features
within the range of LiDAR.

5.2 Possible extensions

The CAP positioning system has been designed to be applicable for a broad range of restricted underwater environ-
ments, hence the consideration of water turbidity and insufficient ambient lighting conditions. However, to expand its
capabilities further, future work will involve using acoustic sensors, such as a short range multibeam sonar, to locate
the underwater robot rather than the optical cameras. It is anticipated that this approach should enable the positioning
system to have improved capability in highly turbid environments. To extend the capabilities of the proposed system
further, it is feasible that multiple underwater vehicles could collaborate, enabling one underwater vehicle, in light of
sight of the surface vehicle, to position a second underwater vehicle, not within light of sight of the surface vehicle.
This could allow the range, in terms of depth, to be extended, and the system to be used for navigation of highly
constrained environments where there is limited, or no line of sight between the submersible robot and surface of
the water. For CAP-CD, currently, the plane in which the underwater robot, as defined by the depth sensor, resides
does not take into account the pitch and roll rotations of the underwater robot. Once rotation occurs, the plane of the
robot’s depth will not be equivalent to the plane in which the depth sensor is located. To address this, the pose of the



underwater robot can be obtained through an IMU, thereby acquiring accurate depth information. Finally, the use of
deep learning to process sonar images, as well as camera images will be investigated.
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