Escalating concern regarding the impacts of reduced genetic diversity on the conservation of endangered species has spurred efforts to obtain chromosome-level genomes through consortia such as the Vertebrate Genomes Project. However, assembling reference genomes for many threatened species remains challenging due to difficulties obtaining optimal input samples (e.g., fresh tissue, cell lines) that can characterize long-term conservation collections. Here, we present a pipeline that leverages genome synteny to construct high-quality genomes for species of conservation concern despite less-than-optimal samples and/or sequencing data, demonstrating its use on Hector’s and Māui dolphins. These endemic New Zealand dolphins are threatened by human activities due to their coastal habitat and small population sizes. Hector’s dolphins are classified as endangered by the IUCN, while the Māui dolphin is among the most critically endangered marine mammals. To assemble reference genomes for these dolphins, we created a pipeline combining de novo assembly tools with reference-guided techniques, utilizing chromosome-level genomes of closely related species. The pipeline assembled highly contiguous chromosome-level genomes (scaffold N50: 110 MB, scaffold L50: 9, miniBUSCO completeness scores >96.35%), despite non-optimal input tissue samples. We demonstrate that these genomes can provide insights relevant for conservation, including historical demography revealing long-term small population sizes, with subspecies divergence occurring ~20 kya, potentially linked to the Last Glacial Maximum. Māui dolphin heterozygosity was 40% lower than Hector’s and comparable to other cetacean species noted for reduced genetic diversity. Through these exemplar genomes, we demonstrate that our pipeline can provide high-quality genomic resources to facilitate ongoing conservation genomics research.

Gert-Jan Jeunen

and 11 more

Marine sponges have recently emerged as efficient natural environmental DNA (eDNA) samplers. The ability of sponges to accumulate eDNA provides an exciting opportunity to reconstruct contemporary communities and ecosystems with high temporal and spatial precision. However, the use of historical eDNA (heDNA), trapped within the vast number of specimens stored in scientific collections, opens up the opportunity to begin to reconstruct the communities and ecosystems of the past. Here, using a variety of Antarctic sponge specimens stored in an extensive marine invertebrate collection, we were able to recover information on Antarctic fish biodiversity from specimens up to 20 years old. We successfully recovered 64 fish heDNA signals from 27 sponge specimens. Alpha diversity measures did not differ among preservation methods, but sponges stored frozen had a significantly different fish community composition compared to those stored dry or in ethanol. Our results show that we were consistently and reliably able to extract the heDNA trapped within marine sponge specimens, thereby enabling the reconstruction and investigation of communities and ecosystems of the recent past with a spatial and temporal resolution previously unattainable. Future research into heDNA extraction from other preservation methods, as well as the impact of specimen age and collection method will strengthen and expand the opportunities for this novel resource to access new knowledge on ecological change during the last century.