References
Anderson, W. W., & Collingridge, G. L. (2007). Capabilities of the
WinLTP data acquisition program extending beyond basic LTP experimental
functions. Journal of Neuroscience Methods , 162 (1-2),
346–356. https://doi.org/10.1016/j.jneumeth.2006.12.018
Baltos, J. A., Casillas-Espinosa, P. M., Rollo, B., Gregory, K. J.,
White, P. J., Christopoulos, A., Kwan, P., O’Brien, T. J., & May, L. T.
(2023). The role of the adenosine system in epilepsy and its
comorbidities. British Journal of Pharmacology ,
10.1111/bph.16094. Advance online publication.
https://doi.org/10.1111/bph.16094
Bauer, J., & Cooper-Mahkorn, D. (2008). Tiagabine: efficacy and safety
in partial seizures - current status. Neuropsychiatric disease and
treatment, 4(4), 731–736. https://doi.org/10.2147/ndt.s833
Beamer, E., Kuchukulla, M., Boison, D., & Engel, T. (2021). ATP and
adenosine-Two players in the control of seizures and epilepsy
development. Progress in Neurobiology , 204 , 102105.
https://doi.org/10.1016/j.pneurobio.2021.102105
Berdichevsky, Y., Dzhala, V., Mail, M., & Staley, K. J. (2012).
Interictal spikes, seizures and ictal cell death are not necessary for
post-traumatic epileptogenesis in vitro. Neurobiology of
Disease , 45 (2), 774–785.
https://doi.org/10.1016/j.nbd.2011.11.001
Blümcke, I., Thom, M., Aronica, E., Armstrong, D. D., Bartolomei, F.,
Bernasconi, A., Bernasconi, N., Bien, C. G., Cendes, F., Coras, R.,
Cross, J. H., Jacques, T. S., Kahane, P., Mathern, G. W., Miyata, H.,
Moshé, S. L., Oz, B., Özkara, Ç., Perucca, E., Sisodiya, S., &
Spreafico, R. (2013). International consensus classification of
hippocampal sclerosis in temporal lobe epilepsy: A Task Force report
from the ILAE Commission on Diagnostic
Methods. Epilepsia , 54 (7), 1315–1329.
https://doi.org/10.1111/epi.12220
Boison, D., & Jarvis, M. F. (2021). Adenosine kinase: A key regulator
of purinergic physiology. Biochemical Pharmacology , 187 ,
114321. https://doi.org/10.1016/j.bcp.2020.114321
Carlin, J. L., Jain, S., Gizewski, E., Wan, T. C., Tosh, D. K., Xiao,
C., Auchampach, J. A., Jacobson, K. A., Gavrilova, O., & Reitman, M. L.
(2017). Hypothermia in mouse is caused by adenosine
A1 and A3 receptor agonists and AMP via
three distinct mechanisms. Neuropharmacology , 114 ,
101–113. https://doi.org/10.1016/j.neuropharm.2016.11.026
Chazalon, M., Paredes-Rodriguez, E., Morin, S., Martinez, A.,
Cristóvão-Ferreira, S., Vaz, S., Sebastiao, A., Panatier, A.,
Boué-Grabot, E., Miguelez, C., & Baufreton, J. (2018). GAT-3
Dysfunction Generates Tonic Inhibition in External Globus Pallidus
Neurons in Parkinsonian Rodents. Cell Reports , 23 (6),
1678–1690. https://doi.org/10.1016/j.celrep.2018.04.014
Cheng, P., Zhang, J., Chu, Z., Liu, W., Lin, H., Wu, Y., & Zhu, J.
(2022). A3 adenosine receptor agonist IB-MECA reverses chronic cerebral
ischemia-induced inhibitory avoidance memory deficit. European
Journal of Pharmacology , 921 , 174874.
https://doi.org/10.1016/j.ejphar.2022.174874
Coppi, E., Cherchi, F., Venturini, M., Lucarini, E., Corradetti, R., Di
Cesare Mannelli, L., Ghelardini, C., Pedata, F., & Pugliese, A. M.
(2022). Therapeutic Potential of Highly Selective
A3 Adenosine Receptor Ligands in the Central and
Peripheral Nervous System. Molecules (Basel,
Switzerland) , 27 (6), 1890.
https://doi.org/10.3390/molecules27061890
Cristóvão-Ferreira, S., Navarro, G., Brugarolas, M., Pérez-Capote, K.,
Vaz, S. H., Fattorini, G., Conti, F., Lluis, C., Ribeiro, J. A.,
McCormick, P. J., Casadó, V., Franco, R., & Sebastião, A. M. (2013).
A1R-A2AR heteromers coupled to Gs and G i/0 proteins modulate GABA
transport into astrocytes. Purinergic Signalling , 9 (3),
433–449. https://doi.org/10.1007/s11302-013-9364-5
Cristóvão-Ferreira, S., Vaz, S. H., Ribeiro, J. A., & Sebastião, A. M.
(2009). Adenosine A2A receptors enhance GABA transport into nerve
terminals by restraining PKC inhibition of GAT-1. Journal of
Neurochemistry , 109 (2), 336–347.
https://doi.org/10.1111/j.1471-4159.2009.05963.x
Dale, N., & Frenguelli, B. G. (2009). Release of adenosine and ATP
during ischemia and epilepsy. Current
Neuropharmacology , 7 (3), 160–179.
https://doi.org/10.2174/157015909789152146
Diógenes, M. J., Neves-Tomé, R., Fucile, S., Martinello, K., Scianni,
M., Theofilas, P., Lopatár, J., Ribeiro, J. A., Maggi, L., Frenguelli,
B. G., Limatola, C., Boison, D., & Sebastião, A. M. (2014). Homeostatic
control of synaptic activity by endogenous adenosine is mediated by
adenosine kinase. Cerebral Cortex (New York, N.Y.), 24(1),
67–80. https://doi.org/10.1093/cercor/bhs284
Dunwiddie T. V. (1980). Endogenously released adenosine regulates
excitability in the in vitro hippocampus. Epilepsia, 21(5),
541–548. https://doi.org/10.1111/j.1528-1157.1980.tb04305.x
Dunwiddie, T. V., Diao, L., Kim, H. O., Jiang, J. L., & Jacobson, K. A.
(1997). Activation of hippocampal adenosine A3 receptors produces a
desensitization of A1 receptor-mediated responses in rat hippocampus.The Journal of Neuroscience: , 17(2), 607–614.
https://doi.org/10.1523/JNEUROSCI.17-02-00607.1997
Dunwiddie, T. V., & Masino, S. A. (2001). The role and regulation of
adenosine in the central nervous system. Annual Review of
Neuroscience , 24, 31–55.
https://doi.org/10.1146/annurev.neuro.24.1.31
Dyhrfjeld-Johnsen, J., Berdichevsky, Y., Swiercz, W., Sabolek, H., &
Staley, K. J. (2010). Interictal spikes precede ictal discharges in an
organotypic hippocampal slice culture model of
epileptogenesis. Journal of Clinical
Neurophysiology , 27 (6), 418–424.
https://doi.org/10.1097/WNP.0b013e3181fe0709
Gao, Z. G., Auchampach, J. A., & Jacobson, K. A. (2023). Species
dependence of A3 adenosine receptor pharmacology and
function. Purinergic Signalling , 19 (3), 523–550.
https://doi.org/10.1007/s11302-022-09910-1
Jacobson, K. A., & Gao, Z. G. (2006). Adenosine receptors as
therapeutic targets. Nature Reviews. Drug discovery , 5 (3),
247–264. https://doi.org/10.1038/nrd1983
Jacobson, K. A., Tosh, D. K., Jain, S., & Gao, Z. G. (2019). Historical
and Current Adenosine Receptor Agonists in Preclinical and Clinical
Development. Frontiers in Cellular Neuroscience , 13 , 124.
https://doi.org/10.3389/fncel.2019.00124
Javaid, S., Alqahtani, F., Ashraf, W., Anjum, S. M. M., Rasool, M. F.,
Ahmad, T., Alasmari, F., Alasmari, A. F., Alqarni, S. A., & Imran, I.
(2023). Tiagabine suppresses pentylenetetrazole-induced seizures in mice
and improves behavioral and cognitive parameters by modulating BDNF/TrkB
expression and neuroinflammatory markers. Biomedicine &
Pharmacotherapy , 160 , 114406.
https://doi.org/10.1016/j.biopha.2023.114406
Kalilani, L., Sun, X., Pelgrims, B., Noack-Rink, M., & Villanueva, V.
(2018). The epidemiology of drug-resistant epilepsy: A systematic review
and meta-analysis. Epilepsia , 59 (12), 2179–2193.
https://doi.org/10.1111/epi.14596
Kälviäinen R. (2001). Long-term safety of
tiagabine. Epilepsia , 42 Suppl 3 , 46–48.
https://doi.org/10.1046/j.1528-1157.2001.042suppl.3046.x
Kwan, P., Schachter, S. C., & Brodie, M. J. (2011). Drug-resistant
epilepsy. The New England Journal of Medicine , 365 (10),
919–926. https://doi.org/10.1056/NEJMra1004418
Laudadio, M. A., & Psarropoulou, C. (2004). The A3 adenosine receptor
agonist 2-Cl-IB-MECA facilitates epileptiform discharges in the CA3 area
of immature rat hippocampal slices. Epilepsy
Research , 59 (2-3), 83–94.
https://doi.org/10.1016/j.eplepsyres.2004.03.005
Li, A. H., Moro, S., Melman, N., Ji, X. D., & Jacobson, K. A. (1998).
Structure-activity relationships and molecular modeling of 3,
5-diacyl-2,4-dialkylpyridine derivatives as selective A3 adenosine
receptor antagonists. Journal of Medicinal
Chemistry , 41 (17), 3186–3201.
https://doi.org/10.1021/jm980093j
Liston, T. E., Hinz, S., Müller, C. E., Holstein, D. M., Wendling, J.,
Melton, R. J., Campbell, M., Korinek, W. S., Suresh, R. R.,
Sethre-Hofstad, D. A., Gao, Z. G., Tosh, D. K., Jacobson, K. A., &
Lechleiter, J. D. (2020). Nucleotide P2Y1 receptor
agonists are in vitro and in vivo prodrugs of
A1/A3 adenosine receptor agonists:
implications for roles of P2Y1 and
A1/A3 receptors in physiology and
pathology. Purinergic Signalling , 16 (4), 543–559.
https://doi.org/10.1007/s11302-020-09732-z
Liston, T. E., Hama, A., Boltze, J., Poe, R. B., Natsume, T., Hayashi,
I., Takamatsu, H., Korinek, W. S., & Lechleiter, J. D. (2022).
Adenosine A1R/A3R (Adenosine A1 and A3 Receptor) Agonist AST-004 Reduces
Brain Infarction in a Nonhuman Primate Model of
Stroke. Stroke , 53 (1), 238–248.
https://doi.org/10.1161/STROKEAHA.121.036396
Lohse, M. J., Maurer, K., Gensheimer, H. P., & Schwabe, U. (1987). Dual
actions of adenosine on rat peritoneal mast
cells. Naunyn-Schmiedeberg’s Archives of
Pharmacology , 335 (5), 555–560.
https://doi.org/10.1007/BF00169124
Löscher, W., & Klein, P. (2021). The Pharmacology and Clinical Efficacy
of Antiseizure Medications: From Bromide Salts to Cenobamate and
Beyond. CNS Drugs , 35 (9), 935–963.
https://doi.org/10.1007/s40263-021-00827-8
Magalhães, D. M., Pereira, N., Rombo, D. M., Beltrão-Cavacas, C.,
Sebastião, A. M., & Valente, C. A. (2018). Ex vivo model of
epilepsy in organotypic slices-a new tool for drug
screening. Journal of Neuroinflammation , 15 (1), 203.
https://doi.org/10.1186/s12974-018-1225-2
Masocha, W., & Parvathy, S. S. (2016). Preventative and therapeutic
effects of a GABA transporter 1 inhibitor administered systemically in a
mouse model of paclitaxel-induced neuropathic
pain. PeerJ , 4 , e2798.
https://doi.org/10.7717/peerj.2798
McNeill, S. M., Baltos, J. A., White, P. J., & May, L. T. (2021).
Biased agonism at adenosine receptors. Cellular
Signalling , 82 , 109954.
https://doi.org/10.1016/j.cellsig.2021.109954
Medina-Ceja, L., Sandoval-García, F., Morales-Villagrán, A., &
López-Pérez, S. J. (2012). Rapid compensatory changes in the expression
of EAAT-3 and GAT-1 transporters during seizures in cells of the CA1 and
dentate gyrus. Journal of biomedical science , 19 (1), 78.
https://doi.org/10.1186/1423-0127-19-78
Meldrum, B. S., & Chapman, A. G. (1999). Basic mechanisms of gabitril
(tiagabine) and future potential
developments. Epilepsia , 40 Suppl 9 , S2–S6.
https://doi.org/10.1111/j.1528-1157.1999.tb02087.x
Miledi, R., Eusebi, F., Martínez-Torres, A., Palma, E., & Trettel, F.
(2002). Expression of functional neurotransmitter receptors inXenopus oocytes after injection of human brain
membranes. Proceedings of the National Academy of Sciences of the
United States of America , 99 (20), 13238–13242.
https://doi.org/10.1073/pnas.192445299
Miledi, R., Palma, E., & Eusebi, F. (2006). Microtransplantation of
neurotransmitter receptors from cells to Xenopus oocyte
membranes: new procedure for ion channel studies. Methods in
Molecular Biology (Clifton, N.J.) , 322 , 347–355.
https://doi.org/10.1007/978-1-59745-000-3_24
Naylor D. E. (2023). In the fast lane: Receptor trafficking during
status epilepticus. Epilepsia Open , 8 Suppl 1 (Suppl 1),
S35–S65. https://doi.org/10.1002/epi4.12718
Noe, F. M., Polascheck, N., Frigerio, F., Bankstahl, M., Ravizza, T.,
Marchini, S., Beltrame, L., Banderó, C. R., Löscher, W., & Vezzani, A.
(2013). Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis
during epileptogenesis provides neuroprotection in two rat models of
temporal lobe epilepsy. Neurobiology of Disease , 59 ,
183–193. https://doi.org/10.1016/j.nbd.2013.07.015
Nguyen, A. T. N., Tran, Q. L., Baltos, J. A., McNeill, S. M., Nguyen, D.
T. N., & May, L. T. (2023). Small molecule allosteric modulation of the
adenosine A1 receptor. Frontiers in
Endocrinology , 14 , 1184360.
https://doi.org/10.3389/fendo.2023.1184360
Palma, E., Trettel, F., Fucile, S., Renzi, M., Miledi, R., & Eusebi, F.
(2003). Microtransplantation of membranes from cultured cells toXenopus oocytes: a method to study neurotransmitter receptors
embedded in native lipids. Proceedings of the National Academy of
Sciences of the United States of America , 100 (5), 2896–2900.
https://doi.org/10.1073/pnas.0438006100
Palumbo, L., Carinci, M., Guarino, A., Asth, L., Zucchini, S.,
Missiroli, S., Rimessi, A., Pinton, P., & Giorgi, C. (2023). The NLRP3
Inflammasome in Neurodegenerative Disorders: Insights from Epileptic
Models. Biomedicines , 11 (10), 2825.
https://doi.org/10.3390/biomedicines11102825
Racine R. J. (1972). Modification of seizure activity by electrical
stimulation. II. Motor seizure. Electroencephalography and
Clinical Neurophysiology , 32 (3), 281–294.
https://doi.org/10.1016/0013-4694(72)90177-0
Reddy, D. S., & Kuruba, R. (2013). Experimental models of status
epilepticus and neuronal injury for evaluation of therapeutic
interventions. International Journal of Molecular
Sciences , 14 (9), 18284–18318.
https://doi.org/10.3390/ijms140918284
Richerson G. B. (2004). Looking for GABA in all the wrong places: the
relevance of extrasynaptic GABA(A) receptors to epilepsy. Epilepsy
Currents , 4 (6), 239–242.
https://doi.org/10.1111/j.1535-7597.2004.46008.x
Rombo, D.M., Ribeiro, J.A., Sebastião, A.M. (2018). Role of Adenosine
Receptors in Epileptic Seizures. In: Borea, P., Varani, K., Gessi, S.,
Merighi, S., Vincenzi, F. (eds) The Adenosine Receptors. The Receptors,
vol 34. Humana Press, Cham.
https://doi.org/10.1007/978-3-319-90808-3_13
Roseti, C., Martinello, K., Fucile, S., Piccari, V., Mascia, A., Di
Gennaro, G., Quarato, P. P., Manfredi, M., Esposito, V., Cantore, G.,
Arcella, A., Simonato, M., Fredholm, B. B., Limatola, C., Miledi, R., &
Eusebi, F. (2008). Adenosine receptor antagonists alter the stability of
human epileptic GABAA receptors. Proceedings of the National
Academy of Sciences of the United States of America , 105 (39),
15118–15123. https://doi.org/10.1073/pnas.0807277105
Roseti, C., Palma, E., Martinello, K., Fucile, S., Morace, R., Esposito,
V., Cantore, G., Arcella, A., Giangaspero, F., Aronica, E., Mascia, A.,
Di Gennaro, G., Quarato, P. P., Manfredi, M., Cristalli, G.,
Lambertucci, C., Marucci, G., Volpini, R., Limatola, C., & Eusebi, F.
(2009). Blockage of A2A and A3 adenosine receptors decreases the
desensitization of human GABA(A) receptors microtransplanted toXenopus oocytes. Proceedings of the National Academy of
Sciences of the United States of America , 106 (37), 15927–15931.
https://doi.org/10.1073/pnas.0907324106
Ruffolo, G., Cifelli, P., Miranda-Lourenço, C., De Felice, E., Limatola,
C., Sebastião, A. M., Diógenes, M. J., Aronica, E., & Palma, E. (2020).
Rare Diseases of Neurodevelopment: Maintain the Mystery or Use a
Dazzling Tool for Investigation? The Case of Rett
Syndrome. Neuroscience , 439 , 146–152.
https://doi.org/10.1016/j.neuroscience.2019.06.015
Sakurai, M., Suzuki, H., Tomita, N., Sunden, Y., Shimada, A., Miyata,
H., & Morita, T. (2018). Enhanced neurogenesis and possible synaptic
reorganization in the piriform cortex of adult rat following kainic
acid-induced status epilepticus. Neuropathology , 38 (2),
135–143. https://doi.org/10.1111/neup.12445
Sandau, U. S., Colino-Oliveira, M., Jones, A., Saleumvong, B., Coffman,
S. Q., Liu, L., Miranda-Lourenço, C., Palminha, C., Batalha, V. L., Xu,
Y., Huo, Y., Diógenes, M. J., Sebastião, A. M., & Boison, D. (2016).
Adenosine Kinase Deficiency in the Brain Results in Maladaptive Synaptic
Plasticity. The Journal of Neuroscience , 36 (48),
12117–12128. https://doi.org/10.1523/JNEUROSCI.2146-16.2016
Sebastião, A. M., Stone, T. W., & Ribeiro, J. A. (1990). The inhibitory
adenosine receptor at the neuromuscular junction and hippocampus of the
rat: antagonism by 1,3,8-substituted xanthines. British Journal of
Pharmacology , 101 (2), 453–459.
https://doi.org/10.1111/j.1476-5381.1990.tb12729.x
Sebastião, A. M., & Ribeiro, J. A. (2009). Adenosine receptors and the
central nervous system. Handbook of Experimental Pharmacology ,
(193), 471–534. https://doi.org/10.1007/978-3-540-89615-9_16
Sebastião, A. M., & Ribeiro, J. A. (2023). Adjusting the brakes to
adjust neuronal activity: Adenosinergic modulation of GABAergic
transmission. Neuropharmacology , 236 , 109600.
https://doi.org/10.1016/j.neuropharm.2023.109600
Segall M. D. (2012). Multi-parameter optimization: identifying high
quality compounds with a balance of properties. Current
Pharmaceutical Design , 18 (9), 1292–1310.
https://doi.org/10.2174/138161212799436430
Sills, G. J., & Rogawski, M. A. (2020). Mechanisms of action of
currently used antiseizure drugs. Neuropharmacology , 168 ,
107966. https://doi.org/10.1016/j.neuropharm.2020.107966
Su, J., Yin, J., Qin, W., Sha, S., Xu, J., & Jiang, C. (2015). Role for
pro-inflammatory cytokines in regulating expression of GABA transporter
type 1 and 3 in specific brain regions of kainic acid-induced status
epilepticus. Neurochemical research , 40 (3), 621–627.
https://doi.org/10.1007/s11064-014-1504-y
Świąder, M. J., Kotowski, J., & Łuszczki, J. J. (2014). Modulation of
adenosinergic system and its application for the treatment of
epilepsy. Pharmacological Reports: PR , 66 (3), 335–342.
https://doi.org/10.1016/j.pharep.2013.10.005
Tosh, D. K., Paoletta, S., Deflorian, F., Phan, K., Moss, S. M., Gao, Z.
G., Jiang, X., & Jacobson, K. A. (2012a). Structural sweet spot for A1
adenosine receptor activation by truncated (N)-methanocarba nucleosides:
receptor docking and potent anticonvulsant activity. Journal of
Medicinal Chemistry , 55 (18), 8075–8090.
https://doi.org/10.1021/jm300965a
Tosh, D. K., Deflorian, F., Phan, K., Gao, Z. G., Wan, T. C., Gizewski,
E., Auchampach, J. A., & Jacobson, K. A. (2012b). Structure-guided
design of A (3) adenosine receptor-selective nucleosides: combination of
2-arylethynyl and bicyclo[3.1.0]hexane substitutions. Journal
of Medicinal Chemistry , 55 (10), 4847–4860.
https://doi.org/10.1021/jm300396n
Tosh, D. K., Rao, H., Bitant, A., Salmaso, V., Mannes, P., Lieberman, D.
I., Vaughan, K. L., Mattison, J. A., Rothwell, A. C., Auchampach, J. A.,
Ciancetta, A., Liu, N., Cui, Z., Gao, Z. G., Reitman, M. L., Gavrilova,
O., & Jacobson, K. A. (2019). Design and in vivo Characterization of A1 Adenosine Receptor Agonists in
the Native Ribose and Conformationally Constrained (N)-Methanocarba
Series. Journal of Medicinal Chemistry , 62 (3), 1502–1522.
https://doi.org/10.1021/acs.jmedchem.8b01662
Tescarollo, F. C., Rombo, D. M., DeLiberto, L. K., Fedele, D. E.,
Alharfoush, E., Tomé, Â. R., Cunha, R. A., Sebastião, A. M., & Boison,
D. (2020). Role of Adenosine in Epilepsy and Seizures. Journal of
Caffeine and Adenosine Research , 10 (2), 45–60.
https://doi.org/10.1089/caff.2019.0022
Valente, C. A., Meda, F. J., Carvalho, M., & Sebastião, A. M. (2021). A
Model of Epileptogenesis in Rhinal Cortex-Hippocampus Organotypic Slice
Cultures. Journal of visualized experiments: JoVE , (169),
10.3791/61330. https://doi.org/10.3791/61330
Vezzani, A., Di Sapia, R., Kebede, V., Balosso, S., & Ravizza, T.
(2023). Neuroimmunology of status epilepticus. Epilepsy &
Behavior: E&B , 140 , 109095.
https://doi.org/10.1016/j.yebeh.2023.109095
Von Lubitz, D. K., Lin, R. C., Boyd, M., Bischofberger, N., & Jacobson,
K. A. (1999). Chronic administration of adenosine A3 receptor agonist
and cerebral ischemia: neuronal and glial effects. European
Journal of Pharmacology , 367 (2-3), 157–163.
https://doi.org/10.1016/s0014-2999(98)00977-7
Wan, T. C., Tampo, A., Kwok, W. M., & Auchampach, J. A. (2019). Ability
of CP-532,903 to protect mouse hearts from ischemia/reperfusion injury
is dependent on expression of A3 adenosine receptors in
cardiomyoyctes. Biochemical Pharmacology , 163 , 21–31.
https://doi.org/10.1016/j.bcp.2019.01.022
Table 1. Evaluation of the intrinsic parameters of the epileptiform
activity depicted by organotypic rhinal-hippocampal slices perfused
under depolarizing conditions (8.5mM of KCl in aCSF) or non-depolarizing
conditions (Neurobasal A medium), in the absence or presence of MRS5474
(250nM).