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Abstract 30 

Species’ lifetime schedules of survival, growth and reproduction generally assort 31 

along a principal axis called the “fast-slow” continuum, with positions attributed to the 32 

value of producing many, fragile offspring early, versus few, high-quality offspring 33 

later. Fast species are classically associated with surplus or pulsed resources, and 34 

slow species with stable, limiting resources. Here we demonstrate that the fast-slow 35 

continuum emerges as a zone of highest fitness in the face of random, structured 36 

demographic disturbances, regardless of resource supply, competition, or life history 37 

trade-offs. Our resilience framework measures resistance, recovery, and fitness of 38 

stage-structured life histories in disturbed environments. Random disturbances 39 

favour either fast or slow life history variants due to their respective weak resistance 40 

and fast recovery, or strong resistance and slow recovery. Demographic disturbance 41 

regimes are important in shaping nature’s diversity of life histories, and the resilience 42 

framework is a useful tool for understanding species’ responses to environmental 43 

change.  44 

 45 

 46 

 47 

 48 

  49 



Introduction 50 

The life history of any individual organism is its lifetime schedule of survival, growth 51 

and reproduction; the life history of a genotype, population or species is summarised 52 

as statistics describing the expected lifetime schedule of its constituent members 53 

(Stearns 1998). Life history associates with fitness, because natural selection 54 

favours schedules of survival and reproduction that maximise numerical 55 

representation in future generations. Life histories also associate with ecological 56 

features of species, including extinction risk (Purvis et al. 2000, Hutchings et al. 57 

2012), invasiveness (Hamilton et al. 2005, Jelbert et al. 2015), crop yields (Miflin 58 

2000) and ecosystem function (Jeppesen et al. 2010, Adler et al. 2014). For these 59 

reasons, a great deal of effort has been invested in understanding the diversity of life 60 

histories found in nature. Prevailing schools of thought have converged on theory 61 

and observation that collapses most life history variation along a principal axis of 62 

variation, from “fast” to “slow” (Stearns 1983, Franco and Silvertown 1996, Salguero-63 

Gómez et al. 2016). Secondary axes of variation are observed in several broad taxa 64 

(Bielby et al. 2007, Salguero-Gómez et al. 2016), but to date, theory and observation 65 

agree on the features of the main axis. Fast species invest in rapid maturation and 66 

the production of large numbers of offspring, at the expense of survival and somatic 67 

maintenance. Slow species invest in survival and maintenance, producing small 68 

numbers of offspring that tend to survive. 69 

Formal theory explains the fast-slow continuum in terms of selection pressures 70 

acting on the timing and magnitude of reproductive output (Stearns 1998), coupled 71 

with presumed trade-offs between maintenance and reproduction (Stearns 1983). In 72 

stable environments, investment in survival and self-maintenance, at the expense of 73 

early reproduction, can be favoured if it results in increased lifetime reproductive 74 



output (Cole 1954, Gadgil and Bossert 1970, Bell 1980, Roff 1981). If the population 75 

is growing, this increase must also exceed the inflationary costs of delayed 76 

reproduction (future offspring will be worth less, per capita, than current ones). 77 

Furthermore, when adults survive better than juveniles, iteroparity (the repeated 78 

production of offspring through an extended reproductive lifespan) is favoured over 79 

semelparity (single-bout or “big bang” reproduction, followed by death) (Gadgil and 80 

Bossert 1970, Charnov and Schaffer 1973, Stearns 1998).  81 

A recent synthesis (Wright et al. 2019), which aligns fast-slow thinking with classical 82 

r-K theory (MacArthur 1962, Boyce 1984, Lande et al. 2017), argues that the relative 83 

success of fast versus slow life histories is mediated by density-dependent selection, 84 

with fast favoured by surplus resources in small populations, and slow favoured 85 

under competition for limited resources. This theory aligns well with observation: 86 

species like aphids scramble for predictably pulsed resources, reproducing rapidly to 87 

maximise fitness during rapid population growth; while elephants invest heavily in 88 

survival and somatic maintenance, achieving large body size that helps them 89 

compete for limiting but reliable resources, replacing themselves by producing small 90 

numbers of high-quality offspring over long lifespans. 91 

In environments that offer unpredictable, fluctuating resources, fitness benefits of 92 

longer lifespans can be amplified by spreading the risk of reproduction through time 93 

(Tuljapurkar 1990), despite the associated costs of somatic maintenance and 94 

survival. These benefits are gained because geometric mean fitness increases with 95 

arithmetic mean fitness but decreases with its variance (Gillespie 1977). Extreme 96 

environmental fluctuations can favour extreme bet-hedging life histories like 97 

diapausing egg stages of water fleas and seed dormancy in many plants (Evans and 98 

Dennehy 2005), but the adaptive benefits of life-history buffering or lability 99 



(McDonald et al. 2017) can favour a range of life history strategies in unpredictable 100 

environments (Wilbur and Rudolf 2006). In semelparous species (in which 101 

reproduction and death coincide), delayed reproduction can be favoured among slow 102 

species when fertility varies through time, and among fast species when survival 103 

varies (Koons et al. 2008).  104 

Overall, prevailing wisdom suggests that selection pressures on life-history 105 

strategies arrange species along a fast-slow continuum, with their positions 106 

depending first on the relationship between age-specific survival, development and 107 

reproductive output (Stearns 1998), then on a combination of intensity of competition 108 

for limited resources (Wright et al. 2019), environmental uncertainty and current 109 

position on the fast-slow axis (Koons et al. 2008).  110 

Here we offer an alternative to that synthesis, proposing instead that random 111 

demographic disturbances alone can impose the selection pressures that generate 112 

the fast-slow life history continuum in the first place. 113 

In stable environments with surplus resources, stage-structured populations settle to 114 

a stable stage structure with a stable rate of increase (Caswell 2000). The stable 115 

structure and dynamic are determined by stage-specific probabilities of survival and 116 

rates of reproduction, i.e. by the vital rates that comprise the organism’s life history. 117 

Stage-structured disturbances harm different life histories differently (Stott, Townley 118 

and Hodgson 2011, White et al. 2022, Appendix 1), hence life histories vary in their 119 

resistance to disturbance. When demographic disturbances knock populations away 120 

from their stable structure, transient dynamics are invoked that differ from the stable 121 

rate of increase (Stott et al. 2011), hence life histories also vary in their recovery 122 

from disturbance (Appendix 2). Resistance and recovery are the two main 123 



components of engineering resilience (Holling 1996, Hodgson et al. 2015), and here 124 

we show that the differential resilience of stage-structured life histories determines 125 

the fitness value of fast, slow and other strategies in the face of random, structured, 126 

demographic disturbances.  127 

Methods 128 

We consider simple life histories with any possible combination of stage-specific 129 

survival and reproduction, subject to the constraint that their fitnesses in undisturbed 130 

environments, i.e. their stable rates of increase, are identical. In a stable 131 

environment with unlimited resources, these life histories are equally fit. We then 132 

subject populations to demographic disturbances that are random in their timing, 133 

structure and magnitude, serving as a type of time-varying environmental model 134 

(Caswell, 2000). But, our approach to environmental stochasticity differs from 135 

prevailing approaches in demographic research. Rather than introduce variation to 136 

the stage-dependent rates of survival and reproduction directly in the demographic 137 

system defined by the stage-structured projection matrix, we choose instead to 138 

implement removals from the population by culling random proportions of individuals 139 

from the state vector describing the abundance of each stage. This approach allows 140 

us to tease apart the resistance and recovery aspects of population responses 141 

(Hodgson et al., 2015). In Supplementary Materials we show that the same 142 

outcomes are seen when disturbances are modelled into the demographic system. 143 

Our simulation models are in discrete time, and disturbances occur with fixed 144 

probability per timestep. Our life histories are described as projection matrices 145 

composed of two stages, with four vital rates. In our first scenario, all surviving stage-146 

1 individuals progress to stage-2 at the end of the first timestep, with stage-specific 147 



survivals s1 and s2 and stage-specific productivities p1 and p2. We call this the 148 

“structured reproduction” model. In our second scenario, we prevent stage-1 149 

individuals from reproducing and introduce a maturation parameter φ, the per-150 

timestep probability of progression from stage-1 to stage-2. We call this the “delayed 151 

maturation” model. In each scenario, three vital rates of the life history are free to 152 

vary while the fourth is constrained by the fixed stable rate of increase, which is the 153 

dominant eigenvalue of the projection matrix, 𝜆1. The system is monitored post-154 

reproductively, such that during any timestep, individuals survive then produce 155 

offspring then are counted. At any timestep and in the absence of disturbance, the 156 

vector of stage-specific abundances, x, updates according to 157 

𝒙𝑡+1 = 𝑨𝒙𝑡         [Equation1] 158 

We introduce structured, random disturbance regimes to each scenario, by culling a 159 

random proportion of individuals from each lifestage, with the per-timestep flip of a 160 

weighted coin, f, prior to the processes of survival and reproduction. Extending the 161 

culling algebra of Hauser et al. (2006) and the harvesting algebra of Lefkovitch 162 

(1967), we define the culling/disturbance matrix Ct to contain the proportion of each 163 

stage class remaining following disturbance at time t: 164 

𝑪𝑡 = [
𝑐1,𝑡 0

0 𝑐2,𝑡
] where 𝒄𝑖,𝑡 = {

𝑈𝑛𝑖𝑓(0,1) if 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓) = 1

1                  if 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓) = 0
  [Equation2] 165 

When exposed to the risk of disturbance, the single timestep projection of the 166 

population vector becomes 167 

𝒙𝑡+1 = 𝑨𝑪𝒕𝒙𝑡 = 𝑨𝑡
∗𝒙𝒕 = [

𝑎1,1𝑐1,𝑡 𝑎1,2𝑐2,𝑡
𝑎2,1𝑐1,𝑡 𝑎2,2𝑐2,𝑡

] 𝒙𝒕        [Equation 3] 168 

 169 



Scenario 1: Stage-structured reproduction  170 

Consider a two-lifestage model of juveniles and adults where adults survive with 171 

probability 0 < s2 < 1 and reproduce with fecundity 0 < p2, and where juveniles 172 

mature in one timestep with survival 0 < s1 < 1 and either cannot reproduce (i.e. p1 = 173 

0) or have productivity at the end of their first timestep of life (0 < p1 < 2). We 174 

simulated life histories across all feasible combinations of s1, s2 and p1 that achieved 175 

a nominal stable rate of increase of 1.2. This choice of undisturbed fitness value is 176 

arbitrary, chosen to keep simulated populations approximately stable in the face of 177 

disturbance, but all our findings are robust to different choices. Juvenile and adult 178 

survivals were set to span from 0.05 to 1 in increments of 0.05, juvenile productivity 179 

to span a sequence from 0 to 2 and adult productivity was calculated from these and 180 

the PPM eigenvalue constraint (λ1 = 1.2).  181 

𝑨 = [
𝑠1𝑝1 𝑠2𝑝2
𝑠1 𝑠2

]        [Equation 4] 182 

and the time-varying disturbed projection matrix is 183 

𝑨𝒕
∗ = [

𝑠1𝑝1𝑐1,𝑡 𝑠2𝑝2𝑐2,𝑡
𝑠1𝑐1,𝑡 𝑠2𝑐2,𝑡

]       [Equation 5] 184 

 185 

Scenario 2: Delayed maturation  186 

In this scenario we extend Scenario 1 by introducing a parameter  governing the 187 

probability with which juveniles mature, i.e. transition from stage 1 to stage 2, and by 188 

preventing juveniles from reproducing (p1 = 0), sometimes known as ‘coin-flipping 189 

maturation’. We simulated life histories across all feasible combinations of s1, s2, φ 190 

and p2 that achieved the nominal stable rate of increase of 1.2.  191 



 192 

𝑨 = [
𝑠1(1 − 𝜑) 𝑠2𝑝2
𝑠1𝜑 𝑠2

]       [Equation 6] 193 

And the time-varying disturbed projection matrix is 194 

𝑨𝒕
∗ = [

𝑠1(1 − 𝜑)𝑐1,𝑡 𝑠2𝑝2𝑐2,𝑡
𝑠1𝜑𝑐1,𝑡 𝑠2𝑐2,𝑡

]      [Equation 7] 195 

 196 

Realised stochastic dynamics 197 

The abundance of each population at any timepoint is 𝑛𝑡 = ∑𝒙𝑡. Over any single 198 

timestep, the geometric dynamic of each population is  199 

‖𝒙𝑡+1‖

‖𝒙𝑡‖
=

‖𝑨𝑪𝑡𝒙𝑡‖

‖𝒙𝑡‖
        [Equation 8] 200 

Where ||x|| is the one-norm, or column-sum, of the vector x. This geometric dynamic 201 

can be re-expressed as the product of the two main components of resilience: 202 

resistance, and recovery. Resistance is the proportion of the current population that 203 

survives demographic disturbance (dt = 
‖𝑪𝒕𝒙𝒕‖

‖𝒙𝑡‖
). While all simulated life histories are 204 

exposed to disturbances with the same expected value of dt, it is the relationship 205 

between the stable stage structure and the variance in dt that causes variation in 206 

resistance (Appendix 1). The second component of resilience, recovery, has two 207 

sub-components: the stable rate of increase 𝜆1, and any extra, transient growth or 208 

decline caused by deviation from stable stage structure (transient reactivity, at = 209 

‖𝑨𝑪𝒕𝒙𝑡‖

𝜆1‖𝑪𝑡𝒙𝒕‖
 (Stott et al 2011)). We show the association between life-history parameters, 210 

disturbed stage structure, and reactivity, in Appendix 2.  211 



During a single timestep, the geometric change in abundance of a disturbed 212 

population can be expanded to describe the distinct processes of resistance and 213 

both stable and transient recovery: 214 

‖𝒙𝑡+1‖

‖𝒙𝑡‖
=

‖𝑨𝑪𝑡𝒙𝑡‖

‖𝒙𝑡‖
=

‖𝑪𝒕𝒙𝒕‖

‖𝒙𝑡‖
. 𝜆1.

‖𝑨𝑪𝒙𝑡‖

‖𝑪𝑡𝒙𝒕‖𝜆1
= 𝑑𝑡𝜆1𝑎𝑡     [Equation 9] 215 

Over multiple timesteps (T), the long-term stochastic rate of increase (s, AKA 216 

fitness) is estimated as the geometric average of the temporal product of this 217 

product.  218 

𝜆𝑠̂ = (∏ 𝑑𝑡𝜆1𝑎𝑡
𝑇
𝑡=1 )

1

𝑇        [Equation 10] 219 

Taking logs and denoting 𝑟𝑠̂ as our estimator of log(s), 220 

𝑟𝑠̂ =
∑ (log(𝑑𝑡)+log(𝜆1)+log (𝑎𝑡
𝑇
𝑡=1 ))

𝑇
=

log(𝑛𝑇 𝑛0⁄ )

𝑇
     [Equation 11] 221 

In each modelling scenario, we create life histories that span all possible 222 

combinations of stage-specific survival, productivity and /or maturation that, in the 223 

absence of disturbance, achieve a stable rate of increase of 1.2. We project each of 224 

these life histories from a starting density of 1, and initial structure equal to the stable 225 

stage structure (dominant right eigenvector) of the life history, for 1000 timesteps, 226 

disturbing each timestep with a probability of f = 0.2. We monitor x, and therefore n, 227 

per timestep for each projection. We replicate projections for each life history 100 228 

times. All results are robust to lengthening the duration of simulations (tested up to 229 

100,000 timesteps). All visualisations of stochastic fitness, resistance and recovery, 230 

are among-replicate averages of per-timestep averages of log-transformed rates of 231 

increase or decline.  232 



Results are visualised using two-dimensional heatmaps, coloured by measurements 233 

of average recovery, resistance and stochastic growth rate 𝑟̂𝑠, over all viable 234 

combinations of s1, s2, p1, p2 and φ. Only two of the four parameters can appear on 235 

the bivariate axes, hence we describe a third parameter using panels, and use 236 

contours for the fourth (noting that each model includes a parameter constrained by 237 

constant 𝜆1). Plot shading is a purple-to-green gradient to indicate the magnitude of 238 

recovery, resistance or the stochastic growth rate from values low-to-high. 239 

In Supplementary Materials we show that the same patterns in stochastic fitness are 240 

seen when disturbances are modelled into the demographic system (Equations 5 241 

and 7). 242 

Results 243 

Model 1: Stage-structured productivity 244 

This scenario introduces a constraint on parameter space because when s1p1 245 

exceeds 1.2, 1 > 1.2 so the nominal stable rate of increase is exceeded by the first 246 

lifestage alone. This constraint is seen as white space in the third row of panels in 247 

Figure 1, i.e. for large values of p1. We simulated life histories across all feasible 248 

combinations of s1, s2, p1 and p2 that achieved the nominal stable rate of increase of 249 

1.2. 250 

[Figure 1 HERE]  251 



With increasing magnitude of yearling productivity, the zone of highest fitness shifts 252 

from a simple negative association between productivity and juvenile survival, to a 253 

more generalised negative association between productivity and survival (Figure 1). 254 

Highest fitness occurs along a ridge of increasing survival probabilities, with an 255 

associated decline in productivity, very much resembling the fast-slow continuum. 256 

Highest fitness is enjoyed by life histories with relatively high survival and moderate 257 

yearling productivity, and lowest fitness is suffered by life histories with very different 258 

yearling and adult rates of survival. 259 

 260 

[Figure 2 HERE] 261 

[Figure 3 HERE] 262 

 263 

The patterns in fitness shown in Figure 1 are explained by associated patterns in 264 

resistance to, and recovery from, random demographic disturbances (Figures 2 and 265 

3). Resistance is maximised along a ridge of negative association between yearling 266 

survival and adult survival, and for intermediate magnitudes of yearling productivity, 267 

this ridge lies along a contour of equal adult productivity. Recovery shows a very 268 

different saddle-shaped pattern with high rates of recovery among the fastest and 269 

slowest life histories and low rates of recovery for life histories with divergent stage-270 

specific rates of survival. The combined effect of resistance and recovery yields the 271 

emergent patterns of stochastic growth in Figure 1. 272 

In the special case where juvenile productivity is set to zero (i.e. juveniles are 273 

prevented from reproducing), demographic disturbance favours an optimal rate of 274 

adult survival, regardless of values of juvenile survival and adult productivity (top-left 275 

panel in Figure 1). The contours of productivity reveal a negative association with 276 



juvenile survival along this ridge of highest fitness, implying a simple trade-off 277 

between the quality and quantity of juveniles. Underpinning this pattern is a clear 278 

negative association between the resistance of life histories to random disturbance 279 

regimes (top-left panel Figure 2), and rate of recovery from them (top-left panel 280 

Figure 3). Highest resistance lies along a ridge described by intermediate 281 

productivity and a negative association between adult survival and juvenile survival. 282 

Highest rates of recovery, meanwhile, are enjoyed by life histories with very low 283 

rates of juvenile survival, low-medium adult survival and medium-high productivity. 284 

Model 2: Delayed Maturation 285 

In this delayed-maturation model, demographic disturbances favour relatively low 286 

rates of maturation, and hence delayed reproduction, surrounded by a zone of high 287 

fitness resembling the fast-slow continuum, i.e. a negative association between rates 288 

of survival and of productivity (Figure 4). For high rates of maturation, the fitness 289 

patterns move towards the special case of zero juvenile productivity in Scenario 1, 290 

favouring moderate values of adult survival and a negative association between 291 

productivity and juvenile survival, but with one key difference: high juvenile survival 292 

and low productivity is favoured.   293 

[Figure 4 HERE] 294 

[Figure 5 HERE] 295 

[Figure 6 HERE] 296 

Patterns of resistance and recovery, for the delayed-maturation scenario, explain the 297 

observed patterns in fitness across the simulated life histories. Resistance is low 298 

among life histories that mature slowly, then is maximised along a ridge of negative 299 

association between juvenile survival and adult survival, with intermediate 300 



magnitudes of productivity (Figure 5). Recovery is fastest among slow-maturing life 301 

histories, but as maturation rate increases, the life histories that achieve slowest 302 

recovery change from those with high juvenile survival to those with low juvenile 303 

survival (Figure 6).  304 

 305 

Discussion 306 

Using two simple life history scenarios, we have shown that the introduction of 307 

random, stage-structured disturbances, changes flat fitness surfaces into landscapes 308 

that favour an axis of life history variation closely resembling the fast-slow 309 

continuum. Generally, fast life histories that favour productivity and rapid maturation 310 

over survival, have weak resistance to unpredictable disturbances, but recover 311 

quickly. Meanwhile, slow life histories that favour survival over productivity and rapid 312 

maturation, are resistant to disturbances but recover slowly. Fitness, which 313 

integrates across resistance and recovery, is maximised for life histories along the 314 

fast-slow axis. Fundamentally, there is no need for differences among species in the 315 

frequency, intensity or structure of demographic disturbances to place those species 316 

along the fast-slow continuum: the continuum itself emerges as a contour of equal 317 

fitness in the face of stochastic disturbances. There is also no need for differences 318 

among species in the supply of resources or the ability to compete for them. 319 

Life histories that deviate from this emergent fast-slow axis, for example by having 320 

very different rates of adult and juvenile survival, tend to perform badly in the face of 321 

random disturbances. On face value this is surprising because, in nature, variation in 322 

survival, among ages or stages, is prevalent. A simple explanation for natural 323 

patterns of age-structured mortality is the typical ontogeny of increasing size with 324 



maturation – physical constraints require offspring to be smaller than their mothers, 325 

and survival often scales allometrically with size (Promislow 1993) – but other 326 

explanations for differences in age-specific survival might include the actual 327 

structure, amplitude and frequency of demographic disturbances experienced in 328 

nature (White et al. 2022). Perhaps natural disturbance regimes favour the 329 

production of atypically fragile (altricial) or robust (precocious) offspring. We note that 330 

a special case of both our modelling scenarios, when juveniles cannot reproduce 331 

and all individuals mature at the same age, favours a trade-off between productivity 332 

and juvenile survival and hence a dissociation of age-specific rates of survival. For 333 

this special case, further work is required to explain the observation that random 334 

disturbances favour a fixed adult survival,  regardless of the values of juvenile 335 

survival and productivity. 336 

When productivity is introduced for stage-1 individuals, the fitness value of survival 337 

rates in the two stages become aligned, and it is this lifetime survival rate that trades 338 

off against productivity to form the fast-slow continuum. This pattern is governed by 339 

opposing patterns of resistance and recovery, across life histories. The saddle-340 

shaped recovery surface, highest for both high-productivity, low survival and for low 341 

productivity, high survival life histories, deserves further study. If stochastic fitness is 342 

linked strongly to rates of recovery, then this saddle-shape could describe divergent 343 

selection along the fast-slow continuum. 344 

When we introduce variation in the rate of maturation, we find that the fast-slow axis 345 

is governed mainly by weak resistance but strong recovery in slow-maturing life 346 

histories and vice versa for fast-maturing life histories, while subtle variations in 347 

these patterns yield a ridge of highest fitness along the fast-slow continuum. The 348 

alignment of adult and juvenile survival, along this ridge, weakens as the rate of 349 



maturation increases, however high rates of maturation have relatively low fitness, 350 

implying that stochastic disturbance is sufficient to favour delayed reproduction. If all 351 

juveniles mature in their first timestep, we return to the simple scenario that favours a 352 

negative association between quantity and quality of offspring.   353 

Beyond this demonstration that random demographic disturbances can select for the 354 

fast-slow axis of life history variation, the resilience framework (Hodgson et al. 2015, 355 

Capdevila et al. 2020) has great potential for more detailed and mechanistic 356 

understanding of real-world life histories in disturbed environments. All natural 357 

populations have vital rates of survival and reproduction that vary through time, and 358 

it is not unusual for populations to be affected by structured demographic 359 

disturbances like fire (Caswell and Kaye 2001), flood (Smith et al. 2005), extreme 360 

weather (Abernathy et al. 2019), cull (Lachish et al. 2010) or epidemic (Benhaiem et 361 

al. 2018). Typically this variation is modelled using projection models containing age- 362 

or stage-specific vital rates that vary through time or among environments (Boyce et 363 

al. 2006, Tuljapurkar 2013). Our alternative, i.e. the use of fixed vital rates but with 364 

disturbances applied to stage structures, opens the large (and growing) toolbox of 365 

transient dynamic analysis (Stott et al. 2011), and lends itself to questions around 366 

the resistance of structured systems to disturbance regimes, and the subsequent 367 

rates of recovery. 368 

Resilience in the face of disturbance is an increasingly important feature of natural 369 

systems in an era of anthropogenic environmental change (Hodgson et al. 2015). 370 

Life histories have evolved in disturbed environments since life began, and it is 371 

intriguing to observe that random demographic disturbance regimes can favour 372 

delayed reproduction, age-structured reproduction and the arrangement of life 373 

histories along the fast-slow continuum. Demographic resilience is a clear rival to the 374 



classic explanations of why fast- and slow-living species coexist in nature. Natural 375 

populations are subject to a variety of structures, amplitudes and frequencies of 376 

demographic disturbances and it would be interesting to consider how natural 377 

selection has shaped, and will shape, the resilience of genotypes, populations and 378 

species to current and future disturbance regimes.  379 

 380 
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 492 

Figure 1: Heatmaps showing the stochastic growth rates (𝑟̂𝑠) for combinations of 493 

adult (s2) and juvenile (s1) survival, with contours describing adult productivity (p2) 494 

and panels for different values of juvenile productivity (p1). All populations disturbed 495 

by stage-specific, Uniform-distributed, proportional culls with per-timestep probability 496 

f = 0.2. The yellow diamond symbol represents the maximum parameter combination 497 

over all plots. The areas of block white represent the parameter combinations that 498 

are not biologically feasible (s1p1 > 1.2). 499 

  500 



 501 

Figure 2: Heatmaps showing demographic resistance, measured as the mean of the 502 

log of the ratio of disturbed to undisturbed population size per timestep, for 503 

combinations of adult (s2) and juvenile (s1) survival, with contours describing adult 504 

productivity (p2) and panels for different values of juvenile productivity (p1). All 505 

populations disturbed by stage-specific, Uniform-distributed, proportional culls with 506 

per-timestep probability f = 0.2. The yellow diamond symbol represents the 507 

maximum parameter combination over all plots.  508 
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 509 

Figure 3: Heatmaps showing demographic recovery, measured as the mean of the 510 

log of the ratio of projected to disturbed population size per timestep, for 511 

combinations of adult (s2) and juvenile (s1) survival, with contours describing adult 512 

productivity (p2) and panels for different values of juvenile productivity. All 513 

populations disturbed by stage-specific, Uniform-distributed, proportional culls with 514 

per-timestep probability f = 0.2. The yellow diamond symbol represents the 515 

maximum parameter combination over all plots.  516 
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 517 

Figure 4: Heatmaps showing the stochastic growth rates (𝑟̂𝑠) for combinations of 518 

adult (s2) and juvenile (s1) survival, with contours describing adult productivity (p2) 519 

and panels for different values of maturation rate (φ). All populations disturbed by 520 

stage-specific, Uniform-distributed, proportional culls with per-timestep probability f = 521 

0.2. The yellow diamond symbol represents the maximum parameter combination 522 

over all plots. 523 



 524 

Figure 5: Heatmaps showing demographic resistance, measured as the mean of the 525 

log of the ratio of disturbed to undisturbed population size per timestep,  for 526 

combinations of adult (s2) and juvenile (s1) survival, with contours describing adult 527 

productivity (p2) and panels for different values of maturation rate (φ). All populations 528 

disturbed by stage-specific, Uniform-distributed, proportional culls with per-timestep 529 

probability f = 0.2. The yellow diamond symbol represents the maximum parameter 530 

combination over all plots. 531 
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 532 

Figure 6: Heatmaps showing demographic recovery, measured as the mean of the 533 

log of the ratio of projected to disturbed population size per timestep,  for 534 

combinations of adult (s2) and juvenile (s1) survival, with contours describing adult 535 

productivity (p2) and panels for different values of maturation rate (φ). All populations 536 

disturbed by stage-specific, Uniform-distributed, proportional culls with per-timestep 537 

probability f = 0.2. The yellow diamond symbol represents the maximum parameter 538 

combination over all plots. 539 
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Appendix 1: Why do structured life histories vary in resistance to stochastic 541 

disturbances? 542 

We have modelled stochastic disturbances as the culling of a Uniform-distributed 543 

proportion of members of each age/stage class. The population-level impact of 544 

disturbance is therefore the sum across all age/stage-classes following their 545 

respective culls. This is the sum of two independent samples from Uniform 546 

distributions with bounds defined by 0 below and the abundance of each stage, 547 

above. 548 

If we set n = x1 + x2 = 1 (i.e. working with relative abundance of each age/stage-549 

class), call the stochastic culls U1 and U2, and their combined impact Z = U1 + U2, we 550 

find the pdf of Z is 551 

  552 

𝑓(𝑧) =

{
 
 

 
 

𝑧

𝑥1(1−𝑥1)
,                           𝑓𝑜𝑟 0 < 𝑧 < 𝑥1

                
1

(1−𝑥1)
,                             𝑓𝑜𝑟 𝑥1 < 𝑧 < (1 − 𝑥1)

1

(1−𝑥1)
+

1

𝑥1
−

𝑧

𝑥1(1−𝑥1)
,      𝑓𝑜𝑟 (1 − 𝑥1) < 𝑧 < 1

  [Equation A1.1] 553 

 554 

The expected resistance is 555 

E(U1 + U2) = E(Z) = 0.5       [Equation A1.2] 556 

And its variance is 557 

Var(Z) = 
1

12
−
𝑥1

6
+
𝑥1
2

6
        [Equation A1.3] 558 

Since the expected value of resistance to the combined cull is constant but its 559 

variance is quadratic-up in x1, the geometric process of multiple culls favours life 560 



histories with even relative abundance of each age/stage (Figure A1). Life histories 561 

with stage structures dominated by one stage class, or the other, will be less 562 

resistant to stochastic disturbance. This is because the geometric mean gets smaller 563 

with constant arithmetic mean and increasing arithmetic variance (Young and Trent 564 

1969, Gillespie 1977). Unbalanced stage structures are typical of the asymmetric 565 

projection matrices that describe life histories, hence variation among life histories, in 566 

resistance to stochastic disturbances, is not surprising. 567 

 568 

Figure A1: Mean and variance in resistance of 2-stage life histories that vary in the 569 

relative abundance (x1) of the first lifestage. Resistance defined as the instantaneous 570 

impact on population abundance caused by Uniform-distributed culling of each 571 

lifestage. Means and variances calculated from 100K simulated disturbances. 572 

Arithmetic mean resistance is constant, but variance is quadratic in x1, and 573 

geometric mean (measuring the product of repeated disturbances) peaks at x1=0.5, 574 

i.e. is maximised for life histories with even stable stage structure. 575 

 576 



Appendix 2: Why do structured life histories vary in recovery from stochastic 577 

disturbances? 578 

When demographic disturbance pushes age/stage structure away from the stable 579 

structure, transient dynamics are invoked while the age/structure settles back to 580 

stability through time (Stott, Townley and Hodgson 2011). The only stage structure 581 

that grows according to the stable rate of increase is the stable structure. All other 582 

stage structures attenuate (have growth rate less than the dominant eigenvalue) or 583 

amplify (growth rate greater than the dominant eigenvalue) (Figure A2). In the first 584 

timestep following disturbance, if A is the population projection matrix then 585 

abundance will be the 1-norm (sum) of the disturbed stage structure projected 586 

through A: 587 

𝑁𝑡+1 = ‖𝑨𝒙𝑡‖1         [Equation A2.1] 588 

And the first-timestep rate of recovery, as a multiplier on the stable rate of increase, 589 

also known as reactivity, is 590 

𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
‖𝑨𝒙𝑡‖1/‖𝒙𝒕‖1

𝜆1(𝑨)
        [Equation A2.2] 591 

Recovery will be fastest for life histories constituted by stage classes that are 592 

particularly highly productive and/or survive well. These are unlikely to resemble the 593 

life histories that are most resistant to disturbance by virtue of having evenly 594 

distributed stage structures. 595 



 596 

Figure A2: First-timestep recovery from stochastic disturbance for stage structures 597 

starting with relative abundance of lifestage 1 (x1) ranging between 0 and 1, when 598 

projected through (a) a fast life history with 𝑨 = [
0.25 12.65
0.1 0.1

]; (b) a slow life history 599 

with 𝑨 = [
0.16 0.52
0.8 0.8

]; (c) a mixed-pace life history with 𝑨 = [
0 1.8
0.2 0.9

]. All three life 600 

histories have dominant eigenvalue = 1.2, but very different patterns of recovery from 601 

demographic disturbance. 602 

Overall we expect a negative association between resistance and recovery, but the 603 

relative strength of these two components of resilience will depend on the structure, 604 

amplitude and frequency of the disturbance regime, and on the life history described 605 

by the projection matrix A. 606 

 607 

  608 



Supplementary Material 609 

Modelling random disturbances in the projection matrix A 610 

Our main description, of findings from demographic disturbance simulations, applied 611 

disturbances to population state vectors, allowing us to unpack the relative 612 

contributions of demographic resistance and demographic recovery to the resulting 613 

stochastic population growth rate or fitness. The usual approach, in stage-structured 614 

demographic modelling, is to introduce stochasticity into the demographic system 615 

model, in other words into the vital rates that form the population projection matrix. 616 

According to equations 5 and 7, the outcome of modelling disturbances as culls of 617 

the population state vector, versus modelling them as variation in the vital rates in 618 

the population projection matrix, should be identical. Here we present the analogous 619 

code and figures that display stochastic population growth rates (AKA fitness) of 620 

simple life histories exposed to random disturbances of their vital rates, using Model 621 

1: Stage-structured Reproduction. The patterns and measurements in the figures are 622 

identical (give or take small noise coming from the simulated disturbance regimes) to 623 

Figure 1 in the main manuscript. 624 

Hence the findings are indeed equivalent to those shown in the main manuscript. 625 

But, by disturbing vital rates instead of culling the population state, we are unable to 626 

unpack the relative contributions of demographic resistance and demographic 627 

recovery, without recourse to the same algebra used in our culling analysis. 628 



 629 

Figure S1: Heatmaps showing the stochastic growth rates (𝑟̂𝑠) for combinations of 630 

adult (s2) and juvenile (s1) survival, with contours describing adult productivity (p2) 631 

and panels for different values of juvenile productivity (p1), when random 632 

disturbances are modelled to affect vital rates in the projection matrix A. All survival 633 

rates disturbed by stage-specific, Uniform-distributed, proportional culls with per-634 

timestep probability f = 0.2. The yellow diamond symbol represents the maximum 635 

parameter combination over all plots. The areas of block white represent the 636 

parameter combinations that are not biologically feasible (s1p1 > 1.2). 637 


