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Abstract

Species’ lifetime schedules of survival, growth and reproduction generally assort
along a principal axis called the “fast-slow” continuum, with positions attributed to the
value of producing many, fragile offspring early, versus few, high-quality offspring
later. Fast species are classically associated with surplus or pulsed resources, and
slow species with stable, limiting resources. Here we demonstrate that the fast-slow
continuum emerges as a zone of highest fitness in the face of random, structured
demographic disturbances, regardless of resource supply, competition, or life history
trade-offs. Our resilience framework measures resistance, recovery, and fitness of
stage-structured life histories in disturbed environments. Random disturbances
favour either fast or slow life history variants due to their respective weak resistance
and fast recovery, or strong resistance and slow recovery. Demographic disturbance
regimes are important in shaping nature’s diversity of life histories, and the resilience
framework is a useful tool for understanding species’ responses to environmental

change.
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Introduction

The life history of any individual organism is its lifetime schedule of survival, growth
and reproduction; the life history of a genotype, population or species is summarised
as statistics describing the expected lifetime schedule of its constituent members
(Stearns 1998). Life history associates with fitness, because natural selection
favours schedules of survival and reproduction that maximise numerical
representation in future generations. Life histories also associate with ecological
features of species, including extinction risk (Purvis et al. 2000, Hutchings et al.
2012), invasiveness (Hamilton et al. 2005, Jelbert et al. 2015), crop yields (Miflin
2000) and ecosystem function (Jeppesen et al. 2010, Adler et al. 2014). For these
reasons, a great deal of effort has been invested in understanding the diversity of life
histories found in nature. Prevailing schools of thought have converged on theory
and observation that collapses most life history variation along a principal axis of
variation, from “fast” to “slow” (Stearns 1983, Franco and Silvertown 1996, Salguero-
GoOmez et al. 2016). Secondary axes of variation are observed in several broad taxa
(Bielby et al. 2007, Salguero-Gémez et al. 2016), but to date, theory and observation
agree on the features of the main axis. Fast species invest in rapid maturation and
the production of large numbers of offspring, at the expense of survival and somatic
maintenance. Slow species invest in survival and maintenance, producing small

numbers of offspring that tend to survive.

Formal theory explains the fast-slow continuum in terms of selection pressures
acting on the timing and magnitude of reproductive output (Stearns 1998), coupled
with presumed trade-offs between maintenance and reproduction (Stearns 1983). In
stable environments, investment in survival and self-maintenance, at the expense of

early reproduction, can be favoured if it results in increased lifetime reproductive
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output (Cole 1954, Gadgil and Bossert 1970, Bell 1980, Roff 1981). If the population
is growing, this increase must also exceed the inflationary costs of delayed
reproduction (future offspring will be worth less, per capita, than current ones).
Furthermore, when adults survive better than juveniles, iteroparity (the repeated
production of offspring through an extended reproductive lifespan) is favoured over
semelparity (single-bout or “big bang” reproduction, followed by death) (Gadgil and

Bossert 1970, Charnov and Schaffer 1973, Stearns 1998).

A recent synthesis (Wright et al. 2019), which aligns fast-slow thinking with classical
r-K theory (MacArthur 1962, Boyce 1984, Lande et al. 2017), argues that the relative
success of fast versus slow life histories is mediated by density-dependent selection,
with fast favoured by surplus resources in small populations, and slow favoured
under competition for limited resources. This theory aligns well with observation:
species like aphids scramble for predictably pulsed resources, reproducing rapidly to
maximise fitness during rapid population growth; while elephants invest heavily in
survival and somatic maintenance, achieving large body size that helps them
compete for limiting but reliable resources, replacing themselves by producing small

numbers of high-quality offspring over long lifespans.

In environments that offer unpredictable, fluctuating resources, fithess benefits of
longer lifespans can be amplified by spreading the risk of reproduction through time
(Tuljapurkar 1990), despite the associated costs of somatic maintenance and
survival. These benefits are gained because geometric mean fitness increases with
arithmetic mean fitness but decreases with its variance (Gillespie 1977). Extreme
environmental fluctuations can favour extreme bet-hedging life histories like
diapausing egg stages of water fleas and seed dormancy in many plants (Evans and

Dennehy 2005), but the adaptive benefits of life-history buffering or lability
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(McDonald et al. 2017) can favour a range of life history strategies in unpredictable
environments (Wilbur and Rudolf 2006). In semelparous species (in which
reproduction and death coincide), delayed reproduction can be favoured among slow
species when fertility varies through time, and among fast species when survival

varies (Koons et al. 2008).

Overall, prevailing wisdom suggests that selection pressures on life-history
strategies arrange species along a fast-slow continuum, with their positions
depending first on the relationship between age-specific survival, development and
reproductive output (Stearns 1998), then on a combination of intensity of competition
for limited resources (Wright et al. 2019), environmental uncertainty and current

position on the fast-slow axis (Koons et al. 2008).

Here we offer an alternative to that synthesis, proposing instead that random
demographic disturbances alone can impose the selection pressures that generate

the fast-slow life history continuum in the first place.

In stable environments with surplus resources, stage-structured populations settle to
a stable stage structure with a stable rate of increase (Caswell 2000). The stable
structure and dynamic are determined by stage-specific probabilities of survival and
rates of reproduction, i.e. by the vital rates that comprise the organism’s life history.
Stage-structured disturbances harm different life histories differently (Stott, Townley
and Hodgson 2011, White et al. 2022, Appendix 1), hence life histories vary in their
resistance to disturbance. When demographic disturbances knock populations away
from their stable structure, transient dynamics are invoked that differ from the stable
rate of increase (Stott et al. 2011), hence life histories also vary in their recovery

from disturbance (Appendix 2). Resistance and recovery are the two main



124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

components of engineering resilience (Holling 1996, Hodgson et al. 2015), and here
we show that the differential resilience of stage-structured life histories determines
the fitness value of fast, slow and other strategies in the face of random, structured,

demographic disturbances.

Methods

We consider simple life histories with any possible combination of stage-specific
survival and reproduction, subject to the constraint that their fithesses in undisturbed
environments, i.e. their stable rates of increase, are identical. In a stable
environment with unlimited resources, these life histories are equally fit. We then
subject populations to demographic disturbances that are random in their timing,
structure and magnitude, serving as a type of time-varying environmental model
(Caswell, 2000). But, our approach to environmental stochasticity differs from
prevailing approaches in demographic research. Rather than introduce variation to
the stage-dependent rates of survival and reproduction directly in the demographic
system defined by the stage-structured projection matrix, we choose instead to
implement removals from the population by culling random proportions of individuals
from the state vector describing the abundance of each stage. This approach allows
us to tease apart the resistance and recovery aspects of population responses
(Hodgson et al., 2015). In Supplementary Materials we show that the same

outcomes are seen when disturbances are modelled into the demographic system.

Our simulation models are in discrete time, and disturbances occur with fixed
probability per timestep. Our life histories are described as projection matrices
composed of two stages, with four vital rates. In our first scenario, all surviving stage-

1 individuals progress to stage-2 at the end of the first timestep, with stage-specific
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survivals s1 and sz and stage-specific productivities p1 and p2. We call this the
“structured reproduction” model. In our second scenario, we prevent stage-1
individuals from reproducing and introduce a maturation parameter @, the per-
timestep probability of progression from stage-1 to stage-2. We call this the “delayed
maturation” model. In each scenario, three vital rates of the life history are free to
vary while the fourth is constrained by the fixed stable rate of increase, which is the
dominant eigenvalue of the projection matrix, 4,. The system is monitored post-
reproductively, such that during any timestep, individuals survive then produce
offspring then are counted. At any timestep and in the absence of disturbance, the

vector of stage-specific abundances, x, updates according to

We introduce structured, random disturbance regimes to each scenario, by culling a
random proportion of individuals from each lifestage, with the per-timestep flip of a
weighted coin, f, prior to the processes of survival and reproduction. Extending the
culling algebra of Hauser et al. (2006) and the harvesting algebra of Lefkovitch
(1967), we define the culling/disturbance matrix C; to contain the proportion of each

stage class remaining following disturbance at time t:

Cie Unif (0,1) if Bernoulli(f) =1

0 .
C, = [ 0 Cz't] where ¢;; = {1 if Bernoulli(f) = 0 [Equation2]

When exposed to the risk of disturbance, the single timestep projection of the

population vector becomes

A11C1,t  A1,2C2¢ .
] ¢ [Equation 3]

— — * —
Xevr = ACex, = ArX, = [a2,1C1,t QA2 2Cot
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Scenario 1: Stage-structured reproduction

Consider a two-lifestage model of juveniles and adults where adults survive with
probability 0 < s2< 1 and reproduce with fecundity O < p2, and where juveniles
mature in one timestep with survival 0 < s1< 1 and either cannot reproduce (i.e. p1=
0) or have productivity at the end of their first timestep of life (0 < p1< 2). We
simulated life histories across all feasible combinations of s1, s2 and p1 that achieved
a nominal stable rate of increase of 1.2. This choice of undisturbed fitness value is
arbitrary, chosen to keep simulated populations approximately stable in the face of
disturbance, but all our findings are robust to different choices. Juvenile and adult
survivals were set to span from 0.05 to 1 in increments of 0.05, juvenile productivity
to span a sequence from 0 to 2 and adult productivity was calculated from these and

the PPM eigenvalue constraint (A1 = 1.2).

[Equation 4]

A= [51291 Szpz]

S S>

and the time-varying disturbed projection matrix is

A = S1P1C1t  S202C2¢
P =

S1C1t S,Co ¢t [Equation 5]

Scenario 2: Delayed maturation

In this scenario we extend Scenario 1 by introducing a parameter ¢ governing the
probability with which juveniles mature, i.e. transition from stage 1 to stage 2, and by
preventing juveniles from reproducing (p1 = 0), sometimes known as ‘coin-flipping
maturation’. We simulated life histories across all feasible combinations of s1, sz, @

and p2 that achieved the nominal stable rate of increase of 1.2.
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A= [51(1 ~ ) szpz] [Equation 6]

S19 S2
And the time-varying disturbed projection matrix is

s1(1—@)cyy 52P2C2,t]

A; =
t— S1C S,C
1PC1t 2C2 ¢

[Equation 7]

Realised stochastic dynamics

The abundance of each population at any timepoint is n, = ), x,. Over any single

timestep, the geometric dynamic of each population is

llxerqll _ NNACexell
[EA] [lxell

[Equation 8]

Where ||x|| is the one-norm, or column-sum, of the vector x. This geometric dynamic
can be re-expressed as the product of the two main components of resilience:

resistance, and recovery. Resistance is the proportion of the current population that

survives demographic disturbance (d; = %). While all simulated life histories are
t

exposed to disturbances with the same expected value of di, it is the relationship
between the stable stage structure and the variance in dt that causes variation in
resistance (Appendix 1). The second component of resilience, recovery, has two
sub-components: the stable rate of increase 1,, and any extra, transient growth or

decline caused by deviation from stable stage structure (transient reactivity, a¢ =

lACex:|l

ACox (Stott et al 2011)). We show the association between life-history parameters,
1 tAt

disturbed stage structure, and reactivity, in Appendix 2.
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During a single timestep, the geometric change in abundance of a disturbed
population can be expanded to describe the distinct processes of resistance and

both stable and transient recovery:

lxerall _ NACexe|l _ 1ICexell [[ACx¢|

llxell [l el "7 NCexellAg

=dAa; [Equation 9]

Over multiple timesteps (T), the long-term stochastic rate of increase (1s, AKA
fitness) is estimated as the geometric average of the temporal product of this

product.
I = (ITf=s dt/hat)% [Equation 10]
Taking logs and denoting 7; as our estimator of log(/s),

&= YT_, (log(dy)+log(11)+log (ar)) _ log(nr/ng)
s T - T

[Equation 11]

In each modelling scenario, we create life histories that span all possible
combinations of stage-specific survival, productivity and /or maturation that, in the
absence of disturbance, achieve a stable rate of increase of 1.2. We project each of
these life histories from a starting density of 1, and initial structure equal to the stable
stage structure (dominant right eigenvector) of the life history, for 1000 timesteps,
disturbing each timestep with a probability of f = 0.2. We monitor x, and therefore n,
per timestep for each projection. We replicate projections for each life history 100
times. All results are robust to lengthening the duration of simulations (tested up to
100,000 timesteps). All visualisations of stochastic fitness, resistance and recovery,
are among-replicate averages of per-timestep averages of log-transformed rates of

increase or decline.
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Results are visualised using two-dimensional heatmaps, coloured by measurements
of average recovery, resistance and stochastic growth rate 7, over all viable
combinations of s1, S2, p1, p2 and ¢. Only two of the four parameters can appear on
the bivariate axes, hence we describe a third parameter using panels, and use
contours for the fourth (noting that each model includes a parameter constrained by
constant 4,). Plot shading is a purple-to-green gradient to indicate the magnitude of

recovery, resistance or the stochastic growth rate from values low-to-high.

In Supplementary Materials we show that the same patterns in stochastic fithess are
seen when disturbances are modelled into the demographic system (Equations 5

and 7).

Results

Model 1: Stage-structured productivity

This scenario introduces a constraint on parameter space because when sip;
exceeds 1.2, 11 > 1.2 so the nominal stable rate of increase is exceeded by the first
lifestage alone. This constraint is seen as white space in the third row of panels in
Figure 1, i.e. for large values of p1. We simulated life histories across all feasible
combinations of s1, s2, p1 and p2 that achieved the nominal stable rate of increase of

1.2.

[Figure 1 HERE]
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With increasing magnitude of yearling productivity, the zone of highest fitness shifts
from a simple negative association between productivity and juvenile survival, to a
more generalised negative association between productivity and survival (Figure 1).
Highest fitness occurs along a ridge of increasing survival probabilities, with an
associated decline in productivity, very much resembling the fast-slow continuum.
Highest fitness is enjoyed by life histories with relatively high survival and moderate
yearling productivity, and lowest fitness is suffered by life histories with very different

yearling and adult rates of survival.

[Figure 2 HERE]
[Figure 3 HERE]

The patterns in fitness shown in Figure 1 are explained by associated patterns in
resistance to, and recovery from, random demographic disturbances (Figures 2 and
3). Resistance is maximised along a ridge of negative association between yearling
survival and adult survival, and for intermediate magnitudes of yearling productivity,
this ridge lies along a contour of equal adult productivity. Recovery shows a very
different saddle-shaped pattern with high rates of recovery among the fastest and
slowest life histories and low rates of recovery for life histories with divergent stage-
specific rates of survival. The combined effect of resistance and recovery yields the

emergent patterns of stochastic growth in Figure 1.

In the special case where juvenile productivity is set to zero (i.e. juveniles are
prevented from reproducing), demographic disturbance favours an optimal rate of
adult survival, regardless of values of juvenile survival and adult productivity (top-left

panel in Figure 1). The contours of productivity reveal a negative association with
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juvenile survival along this ridge of highest fitness, implying a simple trade-off
between the quality and quantity of juveniles. Underpinning this pattern is a clear
negative association between the resistance of life histories to random disturbance
regimes (top-left panel Figure 2), and rate of recovery from them (top-left panel
Figure 3). Highest resistance lies along a ridge described by intermediate
productivity and a negative association between adult survival and juvenile survival.
Highest rates of recovery, meanwhile, are enjoyed by life histories with very low

rates of juvenile survival, low-medium adult survival and medium-high productivity.

Model 2: Delayed Maturation

In this delayed-maturation model, demographic disturbances favour relatively low
rates of maturation, and hence delayed reproduction, surrounded by a zone of high
fithess resembling the fast-slow continuum, i.e. a negative association between rates
of survival and of productivity (Figure 4). For high rates of maturation, the fithess
patterns move towards the special case of zero juvenile productivity in Scenario 1,
favouring moderate values of adult survival and a negative association between
productivity and juvenile survival, but with one key difference: high juvenile survival

and low productivity is favoured.

[Figure 4 HERE]

[Figure 5 HERE]

[Figure 6 HERE]

Patterns of resistance and recovery, for the delayed-maturation scenario, explain the
observed patterns in fitness across the simulated life histories. Resistance is low
among life histories that mature slowly, then is maximised along a ridge of negative

association between juvenile survival and adult survival, with intermediate
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magnitudes of productivity (Figure 5). Recovery is fastest among slow-maturing life
histories, but as maturation rate increases, the life histories that achieve slowest
recovery change from those with high juvenile survival to those with low juvenile

survival (Figure 6).

Discussion

Using two simple life history scenarios, we have shown that the introduction of
random, stage-structured disturbances, changes flat fithess surfaces into landscapes
that favour an axis of life history variation closely resembling the fast-slow
continuum. Generally, fast life histories that favour productivity and rapid maturation
over survival, have weak resistance to unpredictable disturbances, but recover
quickly. Meanwhile, slow life histories that favour survival over productivity and rapid
maturation, are resistant to disturbances but recover slowly. Fitness, which
integrates across resistance and recovery, is maximised for life histories along the
fast-slow axis. Fundamentally, there is no need for differences among species in the
frequency, intensity or structure of demographic disturbances to place those species
along the fast-slow continuum: the continuum itself emerges as a contour of equal
fitness in the face of stochastic disturbances. There is also no need for differences

among species in the supply of resources or the ability to compete for them.

Life histories that deviate from this emergent fast-slow axis, for example by having
very different rates of adult and juvenile survival, tend to perform badly in the face of
random disturbances. On face value this is surprising because, in nature, variation in
survival, among ages or stages, is prevalent. A simple explanation for natural

patterns of age-structured mortality is the typical ontogeny of increasing size with
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maturation — physical constraints require offspring to be smaller than their mothers,
and survival often scales allometrically with size (Promislow 1993) — but other
explanations for differences in age-specific survival might include the actual
structure, amplitude and frequency of demographic disturbances experienced in
nature (White et al. 2022). Perhaps natural disturbance regimes favour the
production of atypically fragile (altricial) or robust (precocious) offspring. We note that
a special case of both our modelling scenarios, when juveniles cannot reproduce
and all individuals mature at the same age, favours a trade-off between productivity
and juvenile survival and hence a dissociation of age-specific rates of survival. For
this special case, further work is required to explain the observation that random
disturbances favour a fixed adult survival, regardless of the values of juvenile

survival and productivity.

When productivity is introduced for stage-1 individuals, the fitness value of survival
rates in the two stages become aligned, and it is this lifetime survival rate that trades
off against productivity to form the fast-slow continuum. This pattern is governed by
opposing patterns of resistance and recovery, across life histories. The saddle-
shaped recovery surface, highest for both high-productivity, low survival and for low
productivity, high survival life histories, deserves further study. If stochastic fitness is
linked strongly to rates of recovery, then this saddle-shape could describe divergent

selection along the fast-slow continuum.

When we introduce variation in the rate of maturation, we find that the fast-slow axis
is governed mainly by weak resistance but strong recovery in slow-maturing life
histories and vice versa for fast-maturing life histories, while subtle variations in
these patterns yield a ridge of highest fithess along the fast-slow continuum. The

alignment of adult and juvenile survival, along this ridge, weakens as the rate of
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maturation increases, however high rates of maturation have relatively low fitness,
implying that stochastic disturbance is sufficient to favour delayed reproduction. If all
juveniles mature in their first timestep, we return to the simple scenario that favours a

negative association between quantity and quality of offspring.

Beyond this demonstration that random demographic disturbances can select for the
fast-slow axis of life history variation, the resilience framework (Hodgson et al. 2015,
Capdevila et al. 2020) has great potential for more detailed and mechanistic
understanding of real-world life histories in disturbed environments. All natural
populations have vital rates of survival and reproduction that vary through time, and
it is not unusual for populations to be affected by structured demographic
disturbances like fire (Caswell and Kaye 2001), flood (Smith et al. 2005), extreme
weather (Abernathy et al. 2019), cull (Lachish et al. 2010) or epidemic (Benhaiem et
al. 2018). Typically this variation is modelled using projection models containing age-
or stage-specific vital rates that vary through time or among environments (Boyce et
al. 2006, Tuljapurkar 2013). Our alternative, i.e. the use of fixed vital rates but with
disturbances applied to stage structures, opens the large (and growing) toolbox of
transient dynamic analysis (Stott et al. 2011), and lends itself to questions around
the resistance of structured systems to disturbance regimes, and the subsequent

rates of recovery.

Resilience in the face of disturbance is an increasingly important feature of natural
systems in an era of anthropogenic environmental change (Hodgson et al. 2015).
Life histories have evolved in disturbed environments since life began, and it is
intriguing to observe that random demographic disturbance regimes can favour
delayed reproduction, age-structured reproduction and the arrangement of life

histories along the fast-slow continuum. Demographic resilience is a clear rival to the
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493  Figure 1: Heatmaps showing the stochastic growth rates (#;) for combinations of

494  adult (s2) and juvenile (s1) survival, with contours describing adult productivity (p2)
495  and panels for different values of juvenile productivity (p1). All populations disturbed
496 by stage-specific, Uniform-distributed, proportional culls with per-timestep probability
497 f=0.2. The yellow diamond symbol represents the maximum parameter combination
498  over all plots. The areas of block white represent the parameter combinations that

499  are not biologically feasible (sip1 > 1.2).
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502  Figure 2: Heatmaps showing demographic resistance, measured as the mean of the
503 log of the ratio of disturbed to undisturbed population size per timestep, for

504 combinations of adult (s2) and juvenile (s1) survival, with contours describing adult
505  productivity (p2) and panels for different values of juvenile productivity (p1). All

506 populations disturbed by stage-specific, Uniform-distributed, proportional culls with
507 per-timestep probability f = 0.2. The yellow diamond symbol represents the

508 maximum parameter combination over all plots.
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Figure 3: Heatmaps showing demographic recovery, measured as the mean of the
log of the ratio of projected to disturbed population size per timestep, for
combinations of adult (s2) and juvenile (s1) survival, with contours describing adult
productivity (p2) and panels for different values of juvenile productivity. All
populations disturbed by stage-specific, Uniform-distributed, proportional culls with
per-timestep probability f = 0.2. The yellow diamond symbol represents the

maximum parameter combination over all plots.
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518 Figure 4: Heatmaps showing the stochastic growth rates (7;) for combinations of

519  adult (s2) and juvenile (s1) survival, with contours describing adult productivity (pz)
520 and panels for different values of maturation rate (¢). All populations disturbed by
521  stage-specific, Uniform-distributed, proportional culls with per-timestep probability f =
522 0.2. The yellow diamond symbol represents the maximum parameter combination

523  over all plots.
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Figure 5: Heatmaps showing demographic resistance, measured as the mean of the
log of the ratio of disturbed to undisturbed population size per timestep, for
combinations of adult (s2) and juvenile (s1) survival, with contours describing adult
productivity (p2) and panels for different values of maturation rate (¢). All populations
disturbed by stage-specific, Uniform-distributed, proportional culls with per-timestep
probability f = 0.2. The yellow diamond symbol represents the maximum parameter

combination over all plots.
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Figure 6: Heatmaps showing demographic recovery, measured as the mean of the
log of the ratio of projected to disturbed population size per timestep, for
combinations of adult (s2) and juvenile (s1) survival, with contours describing adult
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probability f = 0.2. The yellow diamond symbol represents the maximum parameter
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Appendix 1: Why do structured life histories vary in resistance to stochastic

disturbances?

We have modelled stochastic disturbances as the culling of a Uniform-distributed
proportion of members of each age/stage class. The population-level impact of
disturbance is therefore the sum across all age/stage-classes following their
respective culls. This is the sum of two independent samples from Uniform
distributions with bounds defined by 0 below and the abundance of each stage,

above.

If we set n = x1 + x2 =1 (i.e. working with relative abundance of each age/stage-
class), call the stochastic culls U1 and Uz, and their combined impact Z = U1 + Uz, we

find the pdf of Z is

zZ

for0<z<x

x1(1-x1)’
1

f(z) = o’ forx; <z <(1—xq) [Equation Al.1]

! Loz for(1—x)<z<1

(1-x4) x_1 x1(1-x1)’

The expected resistance is
E(U1+U2) =E(Z)=0.5 [Equation Al1.2]
And its variance is

_ 1 x1 |, X% .
Var(Z) = S et [Equation A1.3]

Since the expected value of resistance to the combined cull is constant but its

variance is quadratic-up in x1, the geometric process of multiple culls favours life
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histories with even relative abundance of each age/stage (Figure Al). Life histories
with stage structures dominated by one stage class, or the other, will be less
resistant to stochastic disturbance. This is because the geometric mean gets smaller
with constant arithmetic mean and increasing arithmetic variance (Young and Trent
1969, Gillespie 1977). Unbalanced stage structures are typical of the asymmetric
projection matrices that describe life histories, hence variation among life histories, in

resistance to stochastic disturbances, is not surprising.
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Figure Al: Mean and variance in resistance of 2-stage life histories that vary in the
relative abundance (x1) of the first lifestage. Resistance defined as the instantaneous
impact on population abundance caused by Uniform-distributed culling of each
lifestage. Means and variances calculated from 100K simulated disturbances.
Arithmetic mean resistance is constant, but variance is quadratic in x1, and
geometric mean (measuring the product of repeated disturbances) peaks at x1=0.5,

i.e. is maximised for life histories with even stable stage structure.
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Appendix 2: Why do structured life histories vary in recovery from stochastic

disturbances?

When demographic disturbance pushes age/stage structure away from the stable
structure, transient dynamics are invoked while the age/structure settles back to
stability through time (Stott, Townley and Hodgson 2011). The only stage structure
that grows according to the stable rate of increase is the stable structure. All other
stage structures attenuate (have growth rate less than the dominant eigenvalue) or
amplify (growth rate greater than the dominant eigenvalue) (Figure A2). In the first
timestep following disturbance, if A is the population projection matrix then
abundance will be the 1-norm (sum) of the disturbed stage structure projected

through A:
Nep1 = 1A%y [Equation A2.1]

And the first-timestep rate of recovery, as a multiplier on the stable rate of increase,

also known as reactivity, is

reactivity = % [Equation A2.2]
1

Recovery will be fastest for life histories constituted by stage classes that are
particularly highly productive and/or survive well. These are unlikely to resemble the
life histories that are most resistant to disturbance by virtue of having evenly

distributed stage structures.
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Figure A2: First-timestep recovery from stochastic disturbance for stage structures

starting with relative abundance of lifestage 1 (x1) ranging between 0 and 1, when

projected through (a) a fast life history with A = [O 25 12. 65] (b) a slow life history

with 4 = [0 160, 52] (c) a mixed-pace life history with A = [ 9] All three life

0.2 0.

histories have dominant eigenvalue = 1.2, but very different patterns of recovery from

demographic disturbance.

Overall we expect a negative association between resistance and recovery, but the
relative strength of these two components of resilience will depend on the structure,
amplitude and frequency of the disturbance regime, and on the life history described

by the projection matrix A.
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Supplementary Material

Modelling random disturbances in the projection matrix A

Our main description, of findings from demographic disturbance simulations, applied
disturbances to population state vectors, allowing us to unpack the relative
contributions of demographic resistance and demographic recovery to the resulting
stochastic population growth rate or fithess. The usual approach, in stage-structured
demographic modelling, is to introduce stochasticity into the demographic system

model, in other words into the vital rates that form the population projection matrix.

According to equations 5 and 7, the outcome of modelling disturbances as culls of
the population state vector, versus modelling them as variation in the vital rates in
the population projection matrix, should be identical. Here we present the analogous
code and figures that display stochastic population growth rates (AKA fitness) of
simple life histories exposed to random disturbances of their vital rates, using Model
1: Stage-structured Reproduction. The patterns and measurements in the figures are
identical (give or take small noise coming from the simulated disturbance regimes) to

Figure 1 in the main manuscript.

Hence the findings are indeed equivalent to those shown in the main manuscript.
But, by disturbing vital rates instead of culling the population state, we are unable to
unpack the relative contributions of demographic resistance and demographic

recovery, without recourse to the same algebra used in our culling analysis.
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Figure S1: Heatmaps showing the stochastic growth rates (7;) for combinations of
adult (s2) and juvenile (s1) survival, with contours describing adult productivity (p2)
and panels for different values of juvenile productivity (p1), when random
disturbances are modelled to affect vital rates in the projection matrix A. All survival
rates disturbed by stage-specific, Uniform-distributed, proportional culls with per-
timestep probability f = 0.2. The yellow diamond symbol represents the maximum
parameter combination over all plots. The areas of block white represent the

parameter combinations that are not biologically feasible (sip1 > 1.2).



