loading page

Enhanced CO2 driven root development coordinates the spatial recruitment of diazotrophs in rice
  • +10
  • Junwen Zhao,
  • Yuting Chen,
  • Qi Tao,
  • Lukas Schreiber,
  • Kiran Suresh,
  • Michael Frei,
  • Muhammad Shahedul Alam,
  • Bing Li,
  • Yaping Zhou,
  • Marcel Baer,
  • Frank Hochholdinger,
  • Whangquan Wang,
  • Yu Peng
Junwen Zhao
Sichuan Agricultural University College of Management
Author Profile
Yuting Chen
Sichuan Agricultural University College of Management
Author Profile
Qi Tao
Sichuan Agricultural University College of Management
Author Profile
Lukas Schreiber
Rheinische Friedrich-Wilhelms-Universitat Bonn Institut fur Zellulare und Molekulare Botanik
Author Profile
Kiran Suresh
Rheinische Friedrich-Wilhelms-Universitat Bonn Institut fur Zellulare und Molekulare Botanik
Author Profile
Michael Frei
Justus-Liebig-Universitat Giessen Institut fur Pflanzenphysiologie
Author Profile
Muhammad Shahedul Alam
Justus-Liebig-Universitat Giessen Institut fur Pflanzenphysiologie
Author Profile
Bing Li
Sichuan Agricultural University College of Management
Author Profile
Yaping Zhou
Rheinische Friedrich-Wilhelms-Universitat Bonn Institut fur Nutzpflanzenwissenschaften und Ressourcenschutz
Author Profile
Marcel Baer
Rheinische Friedrich-Wilhelms-Universitat Bonn Institut fur Nutzpflanzenwissenschaften und Ressourcenschutz
Author Profile
Frank Hochholdinger
Rheinische Friedrich-Wilhelms-Universitat Bonn Institut fur Nutzpflanzenwissenschaften und Ressourcenschutz
Author Profile
Whangquan Wang
Sichuan Agricultural University College of Management
Author Profile
Yu Peng
Rheinische Friedrich-Wilhelms-Universitat Bonn Institut fur Nutzpflanzenwissenschaften und Ressourcenschutz

Corresponding Author:yupeng@uni-bonn.de

Author Profile

Abstract

The comprehension of the reciprocal interaction between root development and its co-adapted beneficial microbes in response to elevated CO 2 (eCO 2) will facilitate the identification of nutrient-efficient cultivars for a sustainable agriculture. Here systemically morphological, anatomical, chemical and gene expression assays performed under eCO 2 highlight the divergent root differentiation driven endodermal barrier development with respect to the L-/S-shaped lateral roots under low nitrogen conditions in rice. Next, by metabolome and endodermal-cell specific RNA sequencing we showed that rice adapted to eCO 2 by spatially recruiting diazotrophs through flavonoid secretion in L-shaped lateral roots. To the end, using a rice Casparian strip mutant Oscasp1-1 we validated such root differentiation driven specific recruitment of a diazotrophic family Oxalobacteraceae implicated in plant tolerance to low nitrogen availability. Our work indicates that rice could coordinate nutrient uptake and root differentiation by the recruitment of diazotrophs in L-shaped lateral roots under climate change.
Submitted to Plant, Cell & Environment
Submission Checks Completed
Reviewer(s) Assigned
Assigned to Editor
10 Aug 2024Review(s) Completed, Editorial Evaluation Pending
10 Aug 2024Editorial Decision: Revise Minor
01 Oct 20241st Revision Received
03 Oct 2024Assigned to Editor
03 Oct 2024Submission Checks Completed
03 Oct 2024Review(s) Completed, Editorial Evaluation Pending
03 Oct 2024Reviewer(s) Assigned
11 Oct 2024Editorial Decision: Revise Minor
17 Oct 20242nd Revision Received
18 Oct 2024Submission Checks Completed
18 Oct 2024Assigned to Editor
18 Oct 2024Review(s) Completed, Editorial Evaluation Pending
18 Oct 2024Editorial Decision: Accept