References
1. Hamann, A. & Wang, T. Potential effects of climate change on
ecosystem and tree species distribution in British Columbia.Ecology 87 , 2773–2786 (2006).2. Dennis, R. L. H.,
Sparks, T. H. & Hardy, P. B. Bias in Butterfly Distribution Maps: The
Effects of Sampling Effort. J. Insect Conserv. 3 , 33–42
(1999).3. Van Der Putten, W. H., Macel, M. & Visser, M. E. Predicting
species distribution and abundance responses to climate change: why it
is essential to include biotic interactions across trophic levels.Philos. Trans. R. Soc. B Biol. Sci. 365 , 2025–2034
(2010).4. Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C.
& Mace, G. M. Beyond Predictions: Biodiversity Conservation in a
Changing Climate. Science 332 , 53–58 (2011).5.
Pettorelli, N., Smith, J., Pecl, G. T., Hill, J. K. & Norris, K.
Anticipating arrival: Tackling the national challenges associated with
the redistribution of biodiversity driven by climate change. J.
Appl. Ecol. 56 , 2298–2304 (2019).6. Wallingford, P. D.et al. Adjusting the lens of invasion biology to focus on the
impacts of climate-driven range shifts. Nat. Clim. Change 10 , 398–405 (2020).7. Cranston, J., Crowley, S. L. & Early,
R. UK wildlife recorders cautiously welcome range-shifting species but
incline against intervention to promote or control their establishment.People Nat. 4 , 879–892 (2022).8. Hirzel, A. H., Helfer,
V. & Metral, F. Assessing habitat-suitability models with a virtual
species. Ecol. Model. 145 , 111–121 (2001).9. Anderson,
R. P., Araújo, M., Guisan, A., Lobo, J. M. & Martínez-Meyer, E.Are Species Occurrence Data in Global Online Repositories Fit for
Modeling Species Distributions? The Case of the Global Biodiversity
Information Facility (GBIF) . 1–27 (2016).10. Van Der Veken, S., Hermy,
M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head
start on climate change. Front. Ecol. Environ. 6 ,
212–216 (2008).11. Estrada, A., Morales‐Castilla, I., Meireles, C.,
Caplat, P. & Early, R. Equipped to cope with climate change: traits
associated with range filling across European taxa. Ecography 41 , 770–781 (2018).12. Samy, G. et al. Content
assessment of the primary biodiversity data published through GBIF
network: Status, challenges and potentials. Biodivers. Inform. 8 , (2013).13. Kusber, W.-H. et al. From cleain the
valves to cleaning the data: Case studies using diatom biodiversity data
on the internet. Studi Trent Sci Nat 84 , 111–122.14.
Straub, S. C., Thomsen, M. S. & Wernberg, T. The Dynamic Biogeography
of the Anthropocene: The Speed of Recent Range Shifts in Seaweeds. inSeaweed Phylogeography (eds. Hu, Z.-M. & Fraser, C.) 63–93
(Springer Netherlands, Dordrecht, 2016).
doi:10.1007/978-94-017-7534-2_3.15. Sinka, M. E. et al. A new
malaria vector in Africa: Predicting the expansion range ofAnopheles stephensi and identifying the urban populations at
risk. Proc. Natl. Acad. Sci. 117 , 24900–24908
(2020).16. Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B.
Marine invasive species: validation of citizen science and implications
for national monitoring networks. Biol. Invasions 10 ,
117–128 (2008).17. Maistrello, L., Dioli, P., Bariselli, M., Mazzoli,
G. L. & Giacalone-Forini, I. Citizen science and early detection of
invasive species: phenology of first occurrences of Halyomorpha halys in
Southern Europe. Biol. Invasions 18 , 3109–3116
(2016).18. Sumner, S., Bevan, P., Hart, A. G. & Isaac, N. J. B. Mapping
species distributions in 2 weeks using citizen science. Insect
Conserv. Divers. 12 , 382–388 (2019).19. Jarić, I. et
al. iEcology: Harnessing Large Online Resources to Generate Ecological
Insights. Trends Ecol. Evol. 35 , 630–639 (2020).20.
Hall, D. M. et al. The city as a refuge for insect pollinators.Conserv. Biol. 31 , 24–29 (2017).21. Mancini, F.,
Coghill, G. M. & Lusseau, D. Using social media to quantify spatial and
temporal dynamics of nature-based recreational activities. PLOS
ONE 13 , e0200565 (2018).22. Waring, P. & Townsend, M.Field Guide to the Moths of Great Britain and Ireland .
(Bloomsbury Publishing, 2017).23. Sorace, A. & Gustin, M. Distribution
of generalist and specialist predators along urban gradients.Landsc. Urban Plan. 90 , 111–118 (2009).24. Sparks, T.
H., Dennis, R. L. H., Croxton, P. J. & Cade, M. Increased migration of
Lepidoptera linked to climate change. Eur. J. Entomol. 104 , 139–143 (2007).25. Sparks, T. H., Roy, D. B. & Dennis,
R. L. H. The influence of temperature on migration of Lepidoptera into
Britain. Glob. Change Biol. 11 , 507–514 (2005).26.
WorldClim. Historical monthly weather data. (2020).27. Harris, I.,
Jones, P. & Osborn, T. J. Updated high-resolution grids of monthly
climatic observations - the CRU TS3.10 Dataset. Int. J. Climatol. 642 , 623–642 (2014).28. Early, R. & Sax, D. F. Climatic niche
shifts between species’ native and naturalized ranges raise concern for
ecological forecasts during invasions and climate change. Glob.
Ecol. Biogeogr. 23 , 1356–1365 (2014).29. Gaston, K. J.,
Visser, M. E. & Hölker, F. The biological impacts of artificial light
at night: the research challenge. Philos. Trans. R. Soc. B Biol.
Sci. 370 , 20140133 (2015).30. National Centers for
Environmental Information. Version 1 VIIRS Day/Night Band Nighttime
Lights. (2019).31. Isaac, N. J. B. & Pocock, M. J. O. Bias and
information in biological records: Bias and information in biological
records. Biol. J. Linn. Soc. 115 , 522–531 (2015).32.
Hassall, C. & Thompson, D. J. Accounting for recorder effort in the
detection of range shifts from historical data: Detecting range
shifts from historical data . Methods Ecol. Evol. 1 ,
343–350 (2010).33. Casey, L. M. Using citizen science to monitor
bumblebee populations. (University of Sussex, 2016).34. BirdLife
International. Turdus Merula . (2016).35. Keller, V. et al. European Breeding Bird Atlas 2: Distribution, Abundance and
Change . (European Bird Census Council & Lynx Edicions, Barcelona,
2020).36. Beaumont, L. J. et al. Which species distribution
models are more (or less) likely to project broad-scale, climate-induced
shifts in species ranges? Ecol. Model. 342 , 135–146
(2016).37. R Core Team. R: A language and environment for statistical
computing. (2020).38. Mair, L. & Ruete, A. Explaining Spatial Variation
in the Recording Effort of Citizen Science Data across Multiple Taxa.PLOS ONE 11 , e0147796 (2016).39. Lowenstein, D. M. &
Minor, E. S. Diversity in flowering plants and their characteristics:
integrating humans as a driver of urban floral resources. Urban
Ecosyst. 19 , 1735–1748 (2016).40. Melles, S. J., Fortin,
M.-J., Lindsay, K. & Badzinski, D. Expanding northward: influence of
climate change, forest connectivity, and population processes on a
threatened species’ range shift. Glob. Change Biol. 17 ,
17–31 (2011).41. Goddard, M. A., Dougill, A. J. & Benton, T. G.
Scaling up from gardens: biodiversity conservation in urban
environments. Trends Ecol. Evol. 25 , 90–98 (2010).42.
Roy, H. E. et al. The harlequin ladybird, Harmonia axyridis:
global perspectives on invasion history and ecology. Biol.
Invasions 18 , 997–1044 (2016).43. Veerkamp, C. J. et
al. A review of studies assessing ecosystem services provided by urban
green and blue infrastructure. Ecosyst. Serv. 52 , 101367
(2021).44. Aerts, R., Honnay, O. & Van Nieuwenhuyse, A. Biodiversity
and human health: mechanisms and evidence of the positive health effects
of diversity in nature and green spaces. Br. Med. Bull. 127 , 5–22 (2018).45. Houlden, V., Jani, A. & Hong, A. Is
biodiversity of greenspace important for human health and wellbeing? A
bibliometric analysis and systematic literature review. Urban For.
Urban Green. 66 , 127385 (2021).46. Cooper, D. S. et al. Large Cities Fall Behind in “Neighborhood Biodiversity”. Front.
Conserv. Sci. 2 , 734931 (2021).47. Amorim Maia, A. T.,
Calcagni, F., Connolly, J. J. T., Anguelovski, I. & Langemeyer, J.
Hidden drivers of social injustice: uncovering unequal cultural
ecosystem services behind green gentrification. Environ. Sci.
Policy 112 , 254–263 (2020).48. Persson, A. S., Hederström,
V., Ljungkvist, I., Nilsson, L. & Kendall, L. Citizen science
initiatives increase pollinator activity in private gardens and green
spaces. Front. Sustain. Cities 4 , 1099100 (2023).49.
Langemeyer, J., Calcagni, F. & Baró, F. Mapping the intangible: Using
geolocated social media data to examine landscape aesthetics. Land
Use Policy 77 , 542–552 (2018).50. Sirisuriya, S. de S. A
Comparative Study on Web Scraping. (2015).51. Hirzel, A.H., Le Lay, G.,
Helfer, V., Randin, C., & Guisan A. Evaluating the ability of habitat
suitability models to predict species presences. Ecological Modelling
199, 142-152 (2006).
52. GBIF: The Global Biodiversity Information Facility (year) What
is GBIF? Available from https://www.gbif.org/what-is-gbif
53. GBIF.org (30 January 2020) GBIF Occurrence Download
https://doi.org/10.15468/dl.dtfjkv